Anti-corrosion and cytotoxicity properties of inorganic surface treatments on Mg1Ca biodegradable alloy

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
C.S. Neves , I. Sousa , M.A. Freitas , L. Moreira , C. Costa , J.P. Teixeira , S. Fraga , R.M. Silva , R.F. Silva , M. Starykevich , N. Scharnagl , M.L. Zheludkevich , M.G.S. Ferreira , J. Tedim
{"title":"Anti-corrosion and cytotoxicity properties of inorganic surface treatments on Mg1Ca biodegradable alloy","authors":"C.S. Neves ,&nbsp;I. Sousa ,&nbsp;M.A. Freitas ,&nbsp;L. Moreira ,&nbsp;C. Costa ,&nbsp;J.P. Teixeira ,&nbsp;S. Fraga ,&nbsp;R.M. Silva ,&nbsp;R.F. Silva ,&nbsp;M. Starykevich ,&nbsp;N. Scharnagl ,&nbsp;M.L. Zheludkevich ,&nbsp;M.G.S. Ferreira ,&nbsp;J. Tedim","doi":"10.1016/j.surfcoat.2024.131704","DOIUrl":null,"url":null,"abstract":"<div><div>In this work biodegradable Mg1Ca alloy underwent surface modification using hydroxyapatite (HAp), aluminium oxide (Al<sub>2</sub>O<sub>3</sub>), and treatments with phosphoric (H<sub>3</sub>PO<sub>4</sub>), hydrofluoric (HF), and acetic (CH<sub>3</sub>COOH) acids. The resulting surface-treated Mg substrates were assessed in terms of phase content and chemical composition through X-ray diffraction (XRD) and glow discharge optical emission spectrometry (GDOES). Additionally, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to examine the surface's topography and structure, while the corrosion behavior and cytotoxicity were surveyed using electrochemical impedance spectroscopy (EIS), alongside WST-1 reduction and lactate dehydrogenase (LDH) release assays on L929 mouse fibroblasts. The findings indicated that the surfaces of all samples were uniformly structured, while chemical analysis of the treated surfaces suggested the presence of mostly thin films. Furthermore, EIS results highlighted that the HAp-treated Mg1Ca alloy exhibited superior corrosion resistance, and the cytotoxicity assessment of Mg1Ca-HAp and Mg1Ca-H<sub>3</sub>PO<sub>4</sub> alloys showed minimal cytotoxic effects on mouse fibroblasts, compared to other treated surfaces, suggesting enhanced biocompatibility of those two surface treatments. Overall, this constitutes the first comparative study of different surface treatments developed on biodegradable Mg1Ca alloy, aiming to identify optimal modification strategies for biomedical applications.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"497 ","pages":"Article 131704"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224013367","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work biodegradable Mg1Ca alloy underwent surface modification using hydroxyapatite (HAp), aluminium oxide (Al2O3), and treatments with phosphoric (H3PO4), hydrofluoric (HF), and acetic (CH3COOH) acids. The resulting surface-treated Mg substrates were assessed in terms of phase content and chemical composition through X-ray diffraction (XRD) and glow discharge optical emission spectrometry (GDOES). Additionally, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to examine the surface's topography and structure, while the corrosion behavior and cytotoxicity were surveyed using electrochemical impedance spectroscopy (EIS), alongside WST-1 reduction and lactate dehydrogenase (LDH) release assays on L929 mouse fibroblasts. The findings indicated that the surfaces of all samples were uniformly structured, while chemical analysis of the treated surfaces suggested the presence of mostly thin films. Furthermore, EIS results highlighted that the HAp-treated Mg1Ca alloy exhibited superior corrosion resistance, and the cytotoxicity assessment of Mg1Ca-HAp and Mg1Ca-H3PO4 alloys showed minimal cytotoxic effects on mouse fibroblasts, compared to other treated surfaces, suggesting enhanced biocompatibility of those two surface treatments. Overall, this constitutes the first comparative study of different surface treatments developed on biodegradable Mg1Ca alloy, aiming to identify optimal modification strategies for biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信