Spirulina (Arthrospira platensis) immobilization in calcium-alginate beads can provide a way to produce food-grade C-phycocyanin following a biorefinery perspective

IF 4.6 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Samara C. Silva-Pituco , Leandro L. Aquino , Madalena M. Dias , M. Filomena Barreiro
{"title":"Spirulina (Arthrospira platensis) immobilization in calcium-alginate beads can provide a way to produce food-grade C-phycocyanin following a biorefinery perspective","authors":"Samara C. Silva-Pituco ,&nbsp;Leandro L. Aquino ,&nbsp;Madalena M. Dias ,&nbsp;M. Filomena Barreiro","doi":"10.1016/j.algal.2025.103916","DOIUrl":null,"url":null,"abstract":"<div><div>C-phycocyanin (C-PC), a water-soluble blue pigment, is the primary phycobiliprotein in Spirulina. In this study, Spirulina was immobilized in calcium-alginate (SAC) beads as an innovative method to recover C-PC in the crosslinking bath while retaining the biomass within the beads. This approach simplifies the separation process and reduces costs. SAC beads were prepared via ionic gelation with alginate and CaCl<sub>2</sub> at 2 % (PC2) and 4 % (PC4) concentrations. Different Spirulina to CaCl<sub>2</sub> (S:CA) ratios (1:33, 1:42, 1:83, 1:125 w:v) were tested. PC4 extracts surpassed the food-grade purity threshold (≥ 0.7), achieving the highest purity of 0.83 at a 1:42 S:CA ratio. For PC2, the highest purity was 0.68, observed at a 1:83 S:CA ratio. Overall, this method effectively releases C-PC into the CaCl<sub>2</sub> bath, attaining food-grade purity with significant extraction yields (&gt; 50 mg/g biomass). Additionally, the SAC beads exhibited high protein levels (&gt; 25 g/100 g d.w.) and can be further utilized within a biorefinery framework, either directly as a food supplement or for cascade extractions to recover the remaining lipid and protein fractions.</div></div>","PeriodicalId":7855,"journal":{"name":"Algal Research-Biomass Biofuels and Bioproducts","volume":"86 ","pages":"Article 103916"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algal Research-Biomass Biofuels and Bioproducts","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211926425000256","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

C-phycocyanin (C-PC), a water-soluble blue pigment, is the primary phycobiliprotein in Spirulina. In this study, Spirulina was immobilized in calcium-alginate (SAC) beads as an innovative method to recover C-PC in the crosslinking bath while retaining the biomass within the beads. This approach simplifies the separation process and reduces costs. SAC beads were prepared via ionic gelation with alginate and CaCl2 at 2 % (PC2) and 4 % (PC4) concentrations. Different Spirulina to CaCl2 (S:CA) ratios (1:33, 1:42, 1:83, 1:125 w:v) were tested. PC4 extracts surpassed the food-grade purity threshold (≥ 0.7), achieving the highest purity of 0.83 at a 1:42 S:CA ratio. For PC2, the highest purity was 0.68, observed at a 1:83 S:CA ratio. Overall, this method effectively releases C-PC into the CaCl2 bath, attaining food-grade purity with significant extraction yields (> 50 mg/g biomass). Additionally, the SAC beads exhibited high protein levels (> 25 g/100 g d.w.) and can be further utilized within a biorefinery framework, either directly as a food supplement or for cascade extractions to recover the remaining lipid and protein fractions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Algal Research-Biomass Biofuels and Bioproducts
Algal Research-Biomass Biofuels and Bioproducts BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
9.40
自引率
7.80%
发文量
332
期刊介绍: Algal Research is an international phycology journal covering all areas of emerging technologies in algae biology, biomass production, cultivation, harvesting, extraction, bioproducts, biorefinery, engineering, and econometrics. Algae is defined to include cyanobacteria, microalgae, and protists and symbionts of interest in biotechnology. The journal publishes original research and reviews for the following scope: algal biology, including but not exclusive to: phylogeny, biodiversity, molecular traits, metabolic regulation, and genetic engineering, algal cultivation, e.g. phototrophic systems, heterotrophic systems, and mixotrophic systems, algal harvesting and extraction systems, biotechnology to convert algal biomass and components into biofuels and bioproducts, e.g., nutraceuticals, pharmaceuticals, animal feed, plastics, etc. algal products and their economic assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信