Synchronized visualization and thermal measurements of flow boiling in high-aspect-ratio microchannel with backflow controller

IF 3.6 2区 工程技术 Q1 MECHANICS
Nishant Shah, Hemantkumar B. Mehta, Jyotirmay Banerjee
{"title":"Synchronized visualization and thermal measurements of flow boiling in high-aspect-ratio microchannel with backflow controller","authors":"Nishant Shah,&nbsp;Hemantkumar B. Mehta,&nbsp;Jyotirmay Banerjee","doi":"10.1016/j.ijmultiphaseflow.2025.105140","DOIUrl":null,"url":null,"abstract":"<div><div>Microchannel flow boiling technology faces significant challenges due to the limited understanding of heat transfer mechanisms during various boiling regimes and lack of transient heat transfer analysis in literature. This study introduces a backflow control mechanism positioned before the inlet of a microchannel test section to suppress flow boiling instability. The aim is to elucidate the effect of the backflow control mechanism on flow boiling heat transfer by synchronizing high-speed flow visualizations with transient temperature data. Experiments are conducted on a microchannel heat sink (MCHS) with forty-four parallel microchannels, each having a hydraulic diameter of 315 µm. The flow visualizations capture vapor belts, vapor cluster slugs, nucleate and bubbly flow boiling regimes, rewetting phenomena, and their temporal durations within the MCHS. Surface temperature measurements of the MCHS and fluid inlet and outlet temperatures are used to calculate the heat transfer coefficient. Significant alterations in hydrodynamics, including the duration of dominant flow boiling regimes and rewetting periods, are observed when the backflow controller is employed. While high-frequency transient heat transfer coefficient peaks are typical in conventional microchannel flow boiling systems, the use of a backflow controller reduces the amplitude of these peaks and prolongs their duration. The analysis demonstrates the backflow controller's effectiveness in mitigating oscillations and enhancing heat transfer.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"185 ","pages":"Article 105140"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225000187","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Microchannel flow boiling technology faces significant challenges due to the limited understanding of heat transfer mechanisms during various boiling regimes and lack of transient heat transfer analysis in literature. This study introduces a backflow control mechanism positioned before the inlet of a microchannel test section to suppress flow boiling instability. The aim is to elucidate the effect of the backflow control mechanism on flow boiling heat transfer by synchronizing high-speed flow visualizations with transient temperature data. Experiments are conducted on a microchannel heat sink (MCHS) with forty-four parallel microchannels, each having a hydraulic diameter of 315 µm. The flow visualizations capture vapor belts, vapor cluster slugs, nucleate and bubbly flow boiling regimes, rewetting phenomena, and their temporal durations within the MCHS. Surface temperature measurements of the MCHS and fluid inlet and outlet temperatures are used to calculate the heat transfer coefficient. Significant alterations in hydrodynamics, including the duration of dominant flow boiling regimes and rewetting periods, are observed when the backflow controller is employed. While high-frequency transient heat transfer coefficient peaks are typical in conventional microchannel flow boiling systems, the use of a backflow controller reduces the amplitude of these peaks and prolongs their duration. The analysis demonstrates the backflow controller's effectiveness in mitigating oscillations and enhancing heat transfer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信