Potential Anticancer Effect of Thymoquinone on Glioblastoma Cancer Cells through Alteration in CTSB and CTSD Gene Expression Level

IF 0.5 Q4 GENETICS & HEREDITY
Omid Hosseini , Fatemeh Ataellahi , Raheleh Masoudi
{"title":"Potential Anticancer Effect of Thymoquinone on Glioblastoma Cancer Cells through Alteration in CTSB and CTSD Gene Expression Level","authors":"Omid Hosseini ,&nbsp;Fatemeh Ataellahi ,&nbsp;Raheleh Masoudi","doi":"10.1016/j.humgen.2024.201374","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Glioblastoma is one of the most aggressive and rapidly growing brain tumors. Current therapeutic approaches have proven largely ineffective in treating this malignancy, resulting in a very low survival rate. Accordingly, finding new therapeutic strategies seems inevitable. Recently, some molecular mechanisms that help cancer cells survive, and grow have been elucidated, and targeting critical molecules involved in these processes brings new hopes to cancer treatment. CTSB and CTSD are two important proteins associated with invasion, angiogenesis, and metastasis, which are overexpressed in glioblastoma. A considerable body of evidence demonstrated that Thymoquinone, the main bioactive component of black seeds, has anticancer power against a range of various cancers. The current experiment was designed to determine whether TQ can modulate the mRNA expression level of <em>CTSB</em> and <em>CTSD</em> in glioblastoma cells.</div></div><div><h3>Methods</h3><div>An in vitro study was conducted and relative mRNA level of <em>CTSB</em> and <em>CTSD</em> were assessed using quantitative real-time RT-RCR in U87MG cells treated with 30 or 60 μM concentrations of TQ at two time points; 12 and 24 h post-exposure to capture dynamic changes in gene expression at early and mid-phase intervals.</div></div><div><h3>Results</h3><div>Although there was no reduction in the relative expression of <em>CTSB</em> and <em>CTSD</em> in cells exposed to TQ for 12 h, the mRNA level of both genes significantly decreased at 60 μM of TQ after 24 h exposure.</div></div><div><h3>Conclusion</h3><div>The data presented revealed that at certain concentration and time point, TQ effectively targets two key genes involved in metastasis. Thus, it can be concluded that TQ holds potential as a promising candidate for glioblastoma treatment.</div></div>","PeriodicalId":29686,"journal":{"name":"Human Gene","volume":"43 ","pages":"Article 201374"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773044124001189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Glioblastoma is one of the most aggressive and rapidly growing brain tumors. Current therapeutic approaches have proven largely ineffective in treating this malignancy, resulting in a very low survival rate. Accordingly, finding new therapeutic strategies seems inevitable. Recently, some molecular mechanisms that help cancer cells survive, and grow have been elucidated, and targeting critical molecules involved in these processes brings new hopes to cancer treatment. CTSB and CTSD are two important proteins associated with invasion, angiogenesis, and metastasis, which are overexpressed in glioblastoma. A considerable body of evidence demonstrated that Thymoquinone, the main bioactive component of black seeds, has anticancer power against a range of various cancers. The current experiment was designed to determine whether TQ can modulate the mRNA expression level of CTSB and CTSD in glioblastoma cells.

Methods

An in vitro study was conducted and relative mRNA level of CTSB and CTSD were assessed using quantitative real-time RT-RCR in U87MG cells treated with 30 or 60 μM concentrations of TQ at two time points; 12 and 24 h post-exposure to capture dynamic changes in gene expression at early and mid-phase intervals.

Results

Although there was no reduction in the relative expression of CTSB and CTSD in cells exposed to TQ for 12 h, the mRNA level of both genes significantly decreased at 60 μM of TQ after 24 h exposure.

Conclusion

The data presented revealed that at certain concentration and time point, TQ effectively targets two key genes involved in metastasis. Thus, it can be concluded that TQ holds potential as a promising candidate for glioblastoma treatment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Human Gene
Human Gene Biochemistry, Genetics and Molecular Biology (General), Genetics
CiteScore
1.60
自引率
0.00%
发文量
0
审稿时长
54 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信