Sustainable biodiesel production from waste cooking oil using highly effective CaO/hectorite catalyst: Process optimization, kinetic and thermodynamic studies.

Md Golam Mustafa , Bhaskar Singh , Gajendra Prasad Singh , R.K. Dey
{"title":"Sustainable biodiesel production from waste cooking oil using highly effective CaO/hectorite catalyst: Process optimization, kinetic and thermodynamic studies.","authors":"Md Golam Mustafa ,&nbsp;Bhaskar Singh ,&nbsp;Gajendra Prasad Singh ,&nbsp;R.K. Dey","doi":"10.1016/j.scowo.2024.100034","DOIUrl":null,"url":null,"abstract":"<div><div>Biodiesel production through trans-esterification reaction requires design of efficient solid catalyst for sustainable use. This study reports a newly prepared CaO/hectorite catalyst for trans-esterification reaction of waste cooking oil (WCO). The catalyst material was prepared by wet impregnation method. Material characterization was done using various advanced instrumentation techniques such as FTIR, <sup>1</sup>H/<sup>13</sup>C NMR, XRD NMR, BET, TGA and FE-SEM. The result of FE-SEM characterization shows the surface heterogeneity in catalytic material. Further, an enhanced BET surface area (142.3 m<sup>2</sup> g<sup>−1</sup>) of CaO/hectorite indicated suitability of material for catalytic applications. Kissinger-Akahira-Sonuse (KAS) computational model was used to evaluate thermodynamic parameters. Response surface methodology (RSM) – Box Behnken model/ANOVA was used to draw the 3D-surface plots and 2D-contour plots for estimation of maximum biodiesel yield. The catalytic trans-esterification shows high biodiesel production (95 %) in an optimized reaction condition (10.5:1 methanol:oil molar ratio, 3.5 % catalyst loading, 57.5 °C reaction temperature and 105 min). It was found that the biodiesel produced from WCO has fuel characteristics complied with that of B100. The catalyst could be reused up to seven consecutive cycles operation resulting biodiesel production (&gt;80 % yield) thus indicating future commercial applications in a sustainable manner.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"5 ","pages":"Article 100034"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biodiesel production through trans-esterification reaction requires design of efficient solid catalyst for sustainable use. This study reports a newly prepared CaO/hectorite catalyst for trans-esterification reaction of waste cooking oil (WCO). The catalyst material was prepared by wet impregnation method. Material characterization was done using various advanced instrumentation techniques such as FTIR, 1H/13C NMR, XRD NMR, BET, TGA and FE-SEM. The result of FE-SEM characterization shows the surface heterogeneity in catalytic material. Further, an enhanced BET surface area (142.3 m2 g−1) of CaO/hectorite indicated suitability of material for catalytic applications. Kissinger-Akahira-Sonuse (KAS) computational model was used to evaluate thermodynamic parameters. Response surface methodology (RSM) – Box Behnken model/ANOVA was used to draw the 3D-surface plots and 2D-contour plots for estimation of maximum biodiesel yield. The catalytic trans-esterification shows high biodiesel production (95 %) in an optimized reaction condition (10.5:1 methanol:oil molar ratio, 3.5 % catalyst loading, 57.5 °C reaction temperature and 105 min). It was found that the biodiesel produced from WCO has fuel characteristics complied with that of B100. The catalyst could be reused up to seven consecutive cycles operation resulting biodiesel production (>80 % yield) thus indicating future commercial applications in a sustainable manner.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信