Propofol reduces human TRPA1 activity in a warm environment

IF 2.3 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chihiro Suda , Yasunori Takayama , Makoto Tominaga , Tomoko Akase
{"title":"Propofol reduces human TRPA1 activity in a warm environment","authors":"Chihiro Suda ,&nbsp;Yasunori Takayama ,&nbsp;Makoto Tominaga ,&nbsp;Tomoko Akase","doi":"10.1016/j.bbrep.2025.101918","DOIUrl":null,"url":null,"abstract":"<div><div>Propofol, an intravenous anesthetic, has a side effect of causing vascular pain at the injection site. However, no effective method to inhibit this vascular pain has been established. Propofol-induced vascular pain is caused by activation of transient receptor potential ankyrin1 (TRPA1), which is expressed in the sensory nerve endings distributed around blood vessels. TRPA1 exhibits temperature sensitivity, and the degree of its activation has been reported to change with temperature. However, whether the temperature of propofol influences human TRPA1 (hTRPA1) activation and regulates the extent of vascular pain has not been examined. We investigated hTRPA1 activity in HEK293T cells in response to cooled or heated propofol using the patch-clamp method. We found that hTRPA1 currents were smaller in a warm environment (&gt;35 °C) with heated propofol. Our results suggest that propofol should be kept above 35 °C to minimize hTRPA1 activation. Moreover, heating propofol decreased hTRPA1-mediated currents but did not alter activation of human GABA<sub>A</sub> receptors. This finding suggest that heated propofol can inhibit hTRPA1 activation and reduce vascular pain without losing its anesthetic function.</div></div>","PeriodicalId":8771,"journal":{"name":"Biochemistry and Biophysics Reports","volume":"41 ","pages":"Article 101918"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Biophysics Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405580825000056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Propofol, an intravenous anesthetic, has a side effect of causing vascular pain at the injection site. However, no effective method to inhibit this vascular pain has been established. Propofol-induced vascular pain is caused by activation of transient receptor potential ankyrin1 (TRPA1), which is expressed in the sensory nerve endings distributed around blood vessels. TRPA1 exhibits temperature sensitivity, and the degree of its activation has been reported to change with temperature. However, whether the temperature of propofol influences human TRPA1 (hTRPA1) activation and regulates the extent of vascular pain has not been examined. We investigated hTRPA1 activity in HEK293T cells in response to cooled or heated propofol using the patch-clamp method. We found that hTRPA1 currents were smaller in a warm environment (>35 °C) with heated propofol. Our results suggest that propofol should be kept above 35 °C to minimize hTRPA1 activation. Moreover, heating propofol decreased hTRPA1-mediated currents but did not alter activation of human GABAA receptors. This finding suggest that heated propofol can inhibit hTRPA1 activation and reduce vascular pain without losing its anesthetic function.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry and Biophysics Reports
Biochemistry and Biophysics Reports Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
191
审稿时长
59 days
期刊介绍: Open access, online only, peer-reviewed international journal in the Life Sciences, established in 2014 Biochemistry and Biophysics Reports (BB Reports) publishes original research in all aspects of Biochemistry, Biophysics and related areas like Molecular and Cell Biology. BB Reports welcomes solid though more preliminary, descriptive and small scale results if they have the potential to stimulate and/or contribute to future research, leading to new insights or hypothesis. Primary criteria for acceptance is that the work is original, scientifically and technically sound and provides valuable knowledge to life sciences research. We strongly believe all results deserve to be published and documented for the advancement of science. BB Reports specifically appreciates receiving reports on: Negative results, Replication studies, Reanalysis of previous datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信