Guilherme M. Valadão , Silvio H. Gonsalves , Carlos R. Grandini , Gelson B. de Souza
{"title":"Strengthening of TiNb alloys surfaces by plasma nitriding","authors":"Guilherme M. Valadão , Silvio H. Gonsalves , Carlos R. Grandini , Gelson B. de Souza","doi":"10.1016/j.surfcoat.2024.131723","DOIUrl":null,"url":null,"abstract":"<div><div>TiNb-based alloys are needed as mechanically biocompatible materials, despite having low wear resistance. This topic, not yet well-researched, is being addressed here. Titanium‑niobium alloys with 10, 25 and 35 Nb wt% were DC plasma nitrided at temperatures 600–900 °C. Originally, they featured distinct balances of α, β and α” phases. To probe the heating effects on the bulks, the alloys were thermally treated (TT) at the same nitriding temperatures. They disclose a strong structural and microstructural dependence with the nitriding temperatures and niobium fractions, which intricately rule the mechanical properties of both bulks and layer/substrate systems. The nitriding produces ∼1 μm thick nitride layers (TiN, Ti<sub>2</sub>N) at top surfaces, with high hardness (<em>H</em>) and elastic modulus (<em>E</em>). Beneath lie β-rich regions, spread over 20–50 μm thick layers, with embedded α<sub>N</sub> precipitates whose size vary inversely with the Nb wt% and heating conditions. These layers formation involve a competing effect between N and Nb, which are α and β stabilizers, respectively. The nitrided Ti10Nb present the highest variations compared to TT substrates: <em>H</em> ∼ 16 GPa (4.7×) and <em>E</em> ∼ 230 GPa (91 %). The <em>H</em>/<em>E</em> ratio, an indicative of tribological resistance, increases in all the nitrided surfaces, while it diminishes in the TT bulks. The overall conclusion is that parameters must be carefully chosen for each Ti<img>Nb composition. However, under the requirements of low-modulus bulks and wear protective cases for use in bone prostheses, plasma nitridings must be carried out at temperatures near T<sub>β</sub>. The Ti25Nb nitrided at 700 °C meets these criteria best.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"497 ","pages":"Article 131723"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224013550","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
TiNb-based alloys are needed as mechanically biocompatible materials, despite having low wear resistance. This topic, not yet well-researched, is being addressed here. Titanium‑niobium alloys with 10, 25 and 35 Nb wt% were DC plasma nitrided at temperatures 600–900 °C. Originally, they featured distinct balances of α, β and α” phases. To probe the heating effects on the bulks, the alloys were thermally treated (TT) at the same nitriding temperatures. They disclose a strong structural and microstructural dependence with the nitriding temperatures and niobium fractions, which intricately rule the mechanical properties of both bulks and layer/substrate systems. The nitriding produces ∼1 μm thick nitride layers (TiN, Ti2N) at top surfaces, with high hardness (H) and elastic modulus (E). Beneath lie β-rich regions, spread over 20–50 μm thick layers, with embedded αN precipitates whose size vary inversely with the Nb wt% and heating conditions. These layers formation involve a competing effect between N and Nb, which are α and β stabilizers, respectively. The nitrided Ti10Nb present the highest variations compared to TT substrates: H ∼ 16 GPa (4.7×) and E ∼ 230 GPa (91 %). The H/E ratio, an indicative of tribological resistance, increases in all the nitrided surfaces, while it diminishes in the TT bulks. The overall conclusion is that parameters must be carefully chosen for each TiNb composition. However, under the requirements of low-modulus bulks and wear protective cases for use in bone prostheses, plasma nitridings must be carried out at temperatures near Tβ. The Ti25Nb nitrided at 700 °C meets these criteria best.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.