Modeling the hydraulic roughness of a movable flatbed in a sand channel while considering the effects of water temperature

IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Junzheng Liu , Jinliang Zhang , Zhe Huang , Haijue Xu , Yuchuan Bai , Gang Wang
{"title":"Modeling the hydraulic roughness of a movable flatbed in a sand channel while considering the effects of water temperature","authors":"Junzheng Liu ,&nbsp;Jinliang Zhang ,&nbsp;Zhe Huang ,&nbsp;Haijue Xu ,&nbsp;Yuchuan Bai ,&nbsp;Gang Wang","doi":"10.1016/j.ijsrc.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>The prediction of the flow resistance (usually quantified as the hydraulic roughness) of a movable flatbed is a key issue affecting the calculation accuracy of flood levels in river training projects. Bedload motion on a movable flatbed causes additional energy loss and increases hydraulic roughness. Several theoretical and empirical predictors for characterizing this phenomenon have been proposed, but the accuracy and physical basis of these models should be improved. In this study, the total energy dissipation rate is separated into two components: the energy dissipation rate due to grain drag and the additional energy dissipation rate due to bedload motion. Following the energy dissipation rate balance equation, a new predictor was proposed for movable flatbed flows. The water temperature was empirically coupled with the fluid viscosity and its associated physical variables. A new empirical relation between two dimensionless flow‒sediment combination variables was established to demarcate the various bedform transitions induced by the water temperature. The new predictor was compared with other predictors, and the prediction results were compared to the measured data. The error metric showed that the new predictor provided the highest accuracy, with ∼88.5% of the 826 data points falling within the ±30% error band. The new predictor suggested that the additional drag is nonlinearly proportional to the grain drag, and the scale factor between these two parameters is related to five flow‒sediment variables. In addition, the ability of the new predictor to quantify water temperature effects was examined. The predicted resistance exhibited three change modes with increasing water temperature, and the results suitably agreed with the measurements. The effect of the water temperature on the resistance of a movable flatbed is jointly controlled by the suspension number and roughness Reynolds number. This study provides an effective predictor that can be used by decision makers for modeling the hydraulic roughness of a movable flatbed.</div></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"40 1","pages":"Pages 31-44"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627924001276","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The prediction of the flow resistance (usually quantified as the hydraulic roughness) of a movable flatbed is a key issue affecting the calculation accuracy of flood levels in river training projects. Bedload motion on a movable flatbed causes additional energy loss and increases hydraulic roughness. Several theoretical and empirical predictors for characterizing this phenomenon have been proposed, but the accuracy and physical basis of these models should be improved. In this study, the total energy dissipation rate is separated into two components: the energy dissipation rate due to grain drag and the additional energy dissipation rate due to bedload motion. Following the energy dissipation rate balance equation, a new predictor was proposed for movable flatbed flows. The water temperature was empirically coupled with the fluid viscosity and its associated physical variables. A new empirical relation between two dimensionless flow‒sediment combination variables was established to demarcate the various bedform transitions induced by the water temperature. The new predictor was compared with other predictors, and the prediction results were compared to the measured data. The error metric showed that the new predictor provided the highest accuracy, with ∼88.5% of the 826 data points falling within the ±30% error band. The new predictor suggested that the additional drag is nonlinearly proportional to the grain drag, and the scale factor between these two parameters is related to five flow‒sediment variables. In addition, the ability of the new predictor to quantify water temperature effects was examined. The predicted resistance exhibited three change modes with increasing water temperature, and the results suitably agreed with the measurements. The effect of the water temperature on the resistance of a movable flatbed is jointly controlled by the suspension number and roughness Reynolds number. This study provides an effective predictor that can be used by decision makers for modeling the hydraulic roughness of a movable flatbed.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Sediment Research
International Journal of Sediment Research 环境科学-环境科学
CiteScore
6.90
自引率
5.60%
发文量
88
审稿时长
74 days
期刊介绍: International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense. The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信