Danick Lamoureux , Sophie Ramananarivo , David Melancon , Frédérick P. Gosselin
{"title":"Simulating flow-induced reconfiguration by coupling corotational plate finite elements with a simplified pressure drag","authors":"Danick Lamoureux , Sophie Ramananarivo , David Melancon , Frédérick P. Gosselin","doi":"10.1016/j.eml.2024.102271","DOIUrl":null,"url":null,"abstract":"<div><div>Developing engineering systems that rely on flow-induced reconfiguration, the phenomenon where a structure deforms under flow to reduce its drag, requires design tools that can predict the behavior of these flexible structures. Current methods include using fully coupled computational fluid dynamics and finite element analysis solvers or highly specialized theories for specific geometries. Coupled numerical methods are computationally expensive to use and non-trivial to setup, while specialized theories are difficult to generalize and take a long time to develop. A compromise between speed, accuracy, and versatility is required to be implemented into the design cycle of flexible structures under flow. This paper offers a new numerical implementation of the pressure drag in the context of a corotational finite element formulation on MATLAB. The presented software is verified against different semi-analytical theories applied to slender plates and disks cut along their radii as well as validated against experiments on kirigami sheets and draping disks. <strong>Usage:</strong> The developed code and verification cases presented here are available on GitHub <span><span>https://github.com/lm2-poly/FIRM</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"74 ","pages":"Article 102271"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001512","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing engineering systems that rely on flow-induced reconfiguration, the phenomenon where a structure deforms under flow to reduce its drag, requires design tools that can predict the behavior of these flexible structures. Current methods include using fully coupled computational fluid dynamics and finite element analysis solvers or highly specialized theories for specific geometries. Coupled numerical methods are computationally expensive to use and non-trivial to setup, while specialized theories are difficult to generalize and take a long time to develop. A compromise between speed, accuracy, and versatility is required to be implemented into the design cycle of flexible structures under flow. This paper offers a new numerical implementation of the pressure drag in the context of a corotational finite element formulation on MATLAB. The presented software is verified against different semi-analytical theories applied to slender plates and disks cut along their radii as well as validated against experiments on kirigami sheets and draping disks. Usage: The developed code and verification cases presented here are available on GitHub https://github.com/lm2-poly/FIRM.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.