{"title":"Machine learning-aided prediction and customization on mechanical response and wave attenuation of multifunctional kiri/origami metamaterials","authors":"Sihao Han, Chunlei Li, Qiang Han, Xiaohu Yao","doi":"10.1016/j.eml.2024.102276","DOIUrl":null,"url":null,"abstract":"<div><div>Multifunctional materials attract extensive attention for simultaneously satisfying diverse engineering applications, such as protection against mechanical and vibratory intrusions. Here, the mechanical responses and wave attenuation of multi-functional metamaterials at various elastoplastic are custom-designed. An elegant kiri/origami metamaterial is proposed, offering widely tunable mechanical responses and broadband wave attenuation in ultra low-frequencies. The incomparable compression-twist of kresling origami and the prominent local-resonance of kirigami split-rings promote efficient elastic wave polarization and plastic hinges, providing comprehensive protection from elastic to plastic. Kirigami split-rings highlight a fabrication-friendly approach of forming local resonators. Experiments and analyses confirm the reliability and superiority. Leveraging a machine learning-aided framework, optimal and anticipated individual properties and custom multi-performances are achieved for wave attenuation, energy absorption, plateau fluctuations, deformation triggering forces, and load-bearing/plateau forces under various impact levels. The machine learning-aided framework enables rapid multi-objective prediction and customization end-to-end without requiring prior knowledge. This work holds significant potential for the development and application of multi-functional, multi-physical field and multi-scale metamaterials.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"74 ","pages":"Article 102276"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multifunctional materials attract extensive attention for simultaneously satisfying diverse engineering applications, such as protection against mechanical and vibratory intrusions. Here, the mechanical responses and wave attenuation of multi-functional metamaterials at various elastoplastic are custom-designed. An elegant kiri/origami metamaterial is proposed, offering widely tunable mechanical responses and broadband wave attenuation in ultra low-frequencies. The incomparable compression-twist of kresling origami and the prominent local-resonance of kirigami split-rings promote efficient elastic wave polarization and plastic hinges, providing comprehensive protection from elastic to plastic. Kirigami split-rings highlight a fabrication-friendly approach of forming local resonators. Experiments and analyses confirm the reliability and superiority. Leveraging a machine learning-aided framework, optimal and anticipated individual properties and custom multi-performances are achieved for wave attenuation, energy absorption, plateau fluctuations, deformation triggering forces, and load-bearing/plateau forces under various impact levels. The machine learning-aided framework enables rapid multi-objective prediction and customization end-to-end without requiring prior knowledge. This work holds significant potential for the development and application of multi-functional, multi-physical field and multi-scale metamaterials.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.