Simulation-based deep reinforcement learning for multi-objective identical parallel machine scheduling problem

IF 2.3 3区 工程技术 Q2 ENGINEERING, MARINE
Sohyun Nam , Young-in Cho , Jong Hun Woo
{"title":"Simulation-based deep reinforcement learning for multi-objective identical parallel machine scheduling problem","authors":"Sohyun Nam ,&nbsp;Young-in Cho ,&nbsp;Jong Hun Woo","doi":"10.1016/j.ijnaoe.2024.100629","DOIUrl":null,"url":null,"abstract":"<div><div>In the shipbuilding industry, traditional optimization studies based on linear programming and constraint programming have been conducted to solve mid-term or long-term scheduling problems. However, due to the extensive computational time, these methods face limitations in addressing short-term scheduling problems for the unit production systems of shipbuilding processes, where various environmental uncertainties must be considered. This study employs a deep reinforcement learning approach to develop a dynamic scheduling algorithm for the welding process in profile shops, considering the random arrival of materials and variability in processing time. The scheduling problems of the welding process are formulated as multi-objective identical parallel machine scheduling problems, aimed at minimizing both setup time and tardiness. This study proposes a novel Markov decision process model for the multi-objective scheduling problems for the welding process, incorporating setup requirements and due date-related constraints into the state representation, action modelling, and reward design. Additionally, based on the proposed Markov decision process model, this study develops a learning environment in which a discrete-event simulation model of the welding process is integrated for state transition considering the uncertainties in the welding process. In the training phase of the scheduling agent, the Proximal Policy Optimization algorithm is applied to learn the scheduling policy, which is approximated by deep neural networks. The performance of the proposed algorithm is validated in comparison to four priority rules (SSPT, ATCS, MDD, and COVERT) for various test scenarios with different workloads and levels of variability in processing time.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"16 ","pages":"Article 100629"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678224000487","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0

Abstract

In the shipbuilding industry, traditional optimization studies based on linear programming and constraint programming have been conducted to solve mid-term or long-term scheduling problems. However, due to the extensive computational time, these methods face limitations in addressing short-term scheduling problems for the unit production systems of shipbuilding processes, where various environmental uncertainties must be considered. This study employs a deep reinforcement learning approach to develop a dynamic scheduling algorithm for the welding process in profile shops, considering the random arrival of materials and variability in processing time. The scheduling problems of the welding process are formulated as multi-objective identical parallel machine scheduling problems, aimed at minimizing both setup time and tardiness. This study proposes a novel Markov decision process model for the multi-objective scheduling problems for the welding process, incorporating setup requirements and due date-related constraints into the state representation, action modelling, and reward design. Additionally, based on the proposed Markov decision process model, this study develops a learning environment in which a discrete-event simulation model of the welding process is integrated for state transition considering the uncertainties in the welding process. In the training phase of the scheduling agent, the Proximal Policy Optimization algorithm is applied to learn the scheduling policy, which is approximated by deep neural networks. The performance of the proposed algorithm is validated in comparison to four priority rules (SSPT, ATCS, MDD, and COVERT) for various test scenarios with different workloads and levels of variability in processing time.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.50%
发文量
62
审稿时长
12 months
期刊介绍: International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信