{"title":"Exploring algorithmic solutions for the Independent Roman Domination problem in graphs","authors":"Kaustav Paul, Ankit Sharma, Arti Pandey","doi":"10.1016/j.dam.2024.12.017","DOIUrl":null,"url":null,"abstract":"<div><div>Given a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, a function <span><math><mrow><mi>f</mi><mo>:</mo><mi>V</mi><mo>→</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span> is said to be a <em>Roman Dominating function</em> if for every <span><math><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></math></span> with <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></math></span>, there exists a vertex <span><math><mrow><mi>u</mi><mo>∈</mo><mi>N</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mn>2</mn></mrow></math></span>. A Roman Dominating function <span><math><mi>f</mi></math></span> is said to be an <em>Independent Roman Dominating function</em> (or IRDF), if <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> forms an independent set, where <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mrow><mo>{</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>}</mo></mrow></mrow></math></span>, for <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>. The total weight of <span><math><mi>f</mi></math></span> is equal to <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>, and is denoted as <span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></mrow></math></span>. The <em>Independent Roman Domination Number</em> of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as min{<span><math><mrow><mi>w</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mspace></mspace><mo>|</mo><mspace></mspace><mi>f</mi></mrow></math></span> is an IRDF of <span><math><mi>G</mi></math></span>}. For a given graph <span><math><mi>G</mi></math></span>, the problem of computing <span><math><mrow><msub><mrow><mi>i</mi></mrow><mrow><mi>R</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is defined as the <em>Minimum Independent Roman Domination problem</em>. The problem is already known to be NP-hard for bipartite graphs. In this paper, we further study the algorithmic complexity of the problem. In this paper, we propose a polynomial-time algorithm to solve the Minimum Independent Roman Domination problem for distance-hereditary graphs, split graphs, and <span><math><msub><mrow><mi>P</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-sparse graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"364 ","pages":"Pages 143-152"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24005328","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Given a graph , a function is said to be a Roman Dominating function if for every with , there exists a vertex such that . A Roman Dominating function is said to be an Independent Roman Dominating function (or IRDF), if forms an independent set, where , for . The total weight of is equal to , and is denoted as . The Independent Roman Domination Number of , denoted by , is defined as min{ is an IRDF of }. For a given graph , the problem of computing is defined as the Minimum Independent Roman Domination problem. The problem is already known to be NP-hard for bipartite graphs. In this paper, we further study the algorithmic complexity of the problem. In this paper, we propose a polynomial-time algorithm to solve the Minimum Independent Roman Domination problem for distance-hereditary graphs, split graphs, and -sparse graphs.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.