The influence of small mass loss rate peaks on the rate of spread of predictive flame spread simulations: A theoretical study

IF 3.4 3区 工程技术 Q2 ENGINEERING, CIVIL
Tássia L.S. Quaresma , Tristan Hehnen , Lukas Arnold
{"title":"The influence of small mass loss rate peaks on the rate of spread of predictive flame spread simulations: A theoretical study","authors":"Tássia L.S. Quaresma ,&nbsp;Tristan Hehnen ,&nbsp;Lukas Arnold","doi":"10.1016/j.firesaf.2025.104344","DOIUrl":null,"url":null,"abstract":"<div><div>Peaks in the mass loss rate (MLR) curve derived from thermogravimetric analysis (TGA) are commonly used to infer the pyrolysis rates of solid fuels. While the main peaks are often modelled, smaller MLR fluctuations are typically neglected, leading to discrepancies between models and experiments. The impact of these small fluctuations on key simulation predictions, however, remains unclear. This study systematically explores a specific scenario in which a small MLR fluctuation significantly affects the predicted rate of spread (ROS) of a simplified flame spread simulation. The MaCFP-recommended pyrolysis model for poly(methyl methacrylate) (PMMA) is adapted to incorporate a small MLR peak accounting for 0.5<!--> <!-->% to 2<!--> <!-->% of the sample’s total mass. Results from sensitivity analyses show that the peak position has the greatest impact on the ROS, followed by the peak mass fraction, while the peak width has negligible effect. Adding a small peak at lower temperatures increased the ROS by up to 6<!--> <!-->% to 13<!--> <!-->%, depending on the peak’s mass fraction, whereas peaks at higher temperatures had little to no effect. These results indicate that fluctuations at lower temperatures, w.r.t. the main peak, could significantly enhance the predicted spread rates and should be considered in flame spread simulations.</div></div>","PeriodicalId":50445,"journal":{"name":"Fire Safety Journal","volume":"152 ","pages":"Article 104344"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Safety Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379711225000086","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Peaks in the mass loss rate (MLR) curve derived from thermogravimetric analysis (TGA) are commonly used to infer the pyrolysis rates of solid fuels. While the main peaks are often modelled, smaller MLR fluctuations are typically neglected, leading to discrepancies between models and experiments. The impact of these small fluctuations on key simulation predictions, however, remains unclear. This study systematically explores a specific scenario in which a small MLR fluctuation significantly affects the predicted rate of spread (ROS) of a simplified flame spread simulation. The MaCFP-recommended pyrolysis model for poly(methyl methacrylate) (PMMA) is adapted to incorporate a small MLR peak accounting for 0.5 % to 2 % of the sample’s total mass. Results from sensitivity analyses show that the peak position has the greatest impact on the ROS, followed by the peak mass fraction, while the peak width has negligible effect. Adding a small peak at lower temperatures increased the ROS by up to 6 % to 13 %, depending on the peak’s mass fraction, whereas peaks at higher temperatures had little to no effect. These results indicate that fluctuations at lower temperatures, w.r.t. the main peak, could significantly enhance the predicted spread rates and should be considered in flame spread simulations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fire Safety Journal
Fire Safety Journal 工程技术-材料科学:综合
CiteScore
5.70
自引率
9.70%
发文量
153
审稿时长
60 days
期刊介绍: Fire Safety Journal is the leading publication dealing with all aspects of fire safety engineering. Its scope is purposefully wide, as it is deemed important to encourage papers from all sources within this multidisciplinary subject, thus providing a forum for its further development as a distinct engineering discipline. This is an essential step towards gaining a status equal to that enjoyed by the other engineering disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信