Interstitials enable enhanced mechanical and anti-corrosion properties of a non-equiatomic quinary high-entropy alloy

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pengfei Wu , Lijun Zhan , Kefu Gan , Dingshun Yan , Yong Zhang , Zhiming Li
{"title":"Interstitials enable enhanced mechanical and anti-corrosion properties of a non-equiatomic quinary high-entropy alloy","authors":"Pengfei Wu ,&nbsp;Lijun Zhan ,&nbsp;Kefu Gan ,&nbsp;Dingshun Yan ,&nbsp;Yong Zhang ,&nbsp;Zhiming Li","doi":"10.1016/j.msea.2025.147970","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, interstitial carbon has been employed to further enhance the mechanical and anti-corrosion properties of a metastable quinary Fe<sub>40</sub>Mn<sub>10</sub>Co<sub>20</sub>Cr<sub>20</sub>Ni<sub>10</sub> (at. %) high-entropy alloy (HEA). Both the C-free and C-doped (0.5 at. %) HEAs exhibit a face-centered cubic (FCC) single-phase structure after annealing. Upon tensile deformation, martensitic transformation prevails in the C-free alloy with the formation of hexagonal closed packed (HCP) phase, whereas dislocation slip and twinning are the dominant deformation modes in the C-doped HEA. Such shift of deformation mechanisms can be attributed to the carbon induced increase of stacking fault energy (SFE) (from ∼10 to ∼15 mJ/m<sup>2</sup>). Simultaneous increases of strength and ductility are achieved in this HEA system by carbon alloying. Carbon-induced interstitial solid solution strengthening effect contributes to the increased stress level, whereas the promoted twinning behavior contributes to the enhanced strain hardening ability. Besides, electrochemical corrosion analysis demonstrates that interstitial carbon reduces the active current density and accelerates the passivation process of the HEA upon immersion in 0.1M H<sub>2</sub>SO<sub>4</sub> solution, contributing to the enhanced corrosion resistance. The findings offer insights into the design of strong, ductile and corrosion-resistant alloys.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"927 ","pages":"Article 147970"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325001881","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, interstitial carbon has been employed to further enhance the mechanical and anti-corrosion properties of a metastable quinary Fe40Mn10Co20Cr20Ni10 (at. %) high-entropy alloy (HEA). Both the C-free and C-doped (0.5 at. %) HEAs exhibit a face-centered cubic (FCC) single-phase structure after annealing. Upon tensile deformation, martensitic transformation prevails in the C-free alloy with the formation of hexagonal closed packed (HCP) phase, whereas dislocation slip and twinning are the dominant deformation modes in the C-doped HEA. Such shift of deformation mechanisms can be attributed to the carbon induced increase of stacking fault energy (SFE) (from ∼10 to ∼15 mJ/m2). Simultaneous increases of strength and ductility are achieved in this HEA system by carbon alloying. Carbon-induced interstitial solid solution strengthening effect contributes to the increased stress level, whereas the promoted twinning behavior contributes to the enhanced strain hardening ability. Besides, electrochemical corrosion analysis demonstrates that interstitial carbon reduces the active current density and accelerates the passivation process of the HEA upon immersion in 0.1M H2SO4 solution, contributing to the enhanced corrosion resistance. The findings offer insights into the design of strong, ductile and corrosion-resistant alloys.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信