Tran Thi Thai Hang , Vien Vinh Phat , Nguyen Anh Dao , Huynh Hieu Hanh , Nguyen Nhat Thoai , Pham Tien Hung , Dao Van Tri , Tran Le Luu , Tran Hung Thuan , Nguyen Van Tuyen , Chu Xuan Quang , Maria Francesca Vigile , Alfredo Cassano , Francesco Galiano , Alberto Figoli
{"title":"Green chemistry treatment of seafood processing wastewater using pilot scale Anaerobic Membrane Bioreactor (AnMBR) in a realtime mode","authors":"Tran Thi Thai Hang , Vien Vinh Phat , Nguyen Anh Dao , Huynh Hieu Hanh , Nguyen Nhat Thoai , Pham Tien Hung , Dao Van Tri , Tran Le Luu , Tran Hung Thuan , Nguyen Van Tuyen , Chu Xuan Quang , Maria Francesca Vigile , Alfredo Cassano , Francesco Galiano , Alberto Figoli","doi":"10.1016/j.greeac.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><div>The seafood processing industry's growing revenue heightens the urgency of treating wastewater rich in harmful pollutants. Addressing this challenge, Anaerobic Membrane Bioreactor (AnMBR) technology emerges as a green and sustainable solution by integrating activated sludge microorganisms and nano-pore membranes without using chemicals. This study hypothesizes that a pilot-scale AnMBR system can effectively treat seafood processing wastewater while achieving compliance with stringent discharge standards. A 0.5 m³/day pilot AnMBR was constructed and operated for two months in a seafood factory to evaluate pollutant removal and operational stability. The system achieved high pollutant removal efficiencies: 99.63 ± 0.14 % Total Suspended Solids (TSS), 61.04 ± 7.77 % Chemical Oxygen Demand (COD), 32.02 ± 17.42 % Total Diluted Solids (TDS), 13.30 ± 4.17 % Total Nitrogen (TN), and 11.12 ± 2.46 % Total Phosphorus (TP), with favorable sludge parameters (SVI: 20, MLSS: 11.5 g/L) and stable operation (TMP: 0.66 bar, flux: 18.2 L/m²·h). These results meet two national seafood wastewater discharge standards, highlighting AnMBR's potential for large-scale applications in the industry. These outcomes obtained at the pilot-scale level meet two national parameters discharge standard which applies specifically to seafood processing wastewater. It underscores the significant potential of AnMBR technology for widespread adoption in treating real-time wastewater generated by the seafood industry.</div></div>","PeriodicalId":100594,"journal":{"name":"Green Analytical Chemistry","volume":"12 ","pages":"Article 100189"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772577424000983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The seafood processing industry's growing revenue heightens the urgency of treating wastewater rich in harmful pollutants. Addressing this challenge, Anaerobic Membrane Bioreactor (AnMBR) technology emerges as a green and sustainable solution by integrating activated sludge microorganisms and nano-pore membranes without using chemicals. This study hypothesizes that a pilot-scale AnMBR system can effectively treat seafood processing wastewater while achieving compliance with stringent discharge standards. A 0.5 m³/day pilot AnMBR was constructed and operated for two months in a seafood factory to evaluate pollutant removal and operational stability. The system achieved high pollutant removal efficiencies: 99.63 ± 0.14 % Total Suspended Solids (TSS), 61.04 ± 7.77 % Chemical Oxygen Demand (COD), 32.02 ± 17.42 % Total Diluted Solids (TDS), 13.30 ± 4.17 % Total Nitrogen (TN), and 11.12 ± 2.46 % Total Phosphorus (TP), with favorable sludge parameters (SVI: 20, MLSS: 11.5 g/L) and stable operation (TMP: 0.66 bar, flux: 18.2 L/m²·h). These results meet two national seafood wastewater discharge standards, highlighting AnMBR's potential for large-scale applications in the industry. These outcomes obtained at the pilot-scale level meet two national parameters discharge standard which applies specifically to seafood processing wastewater. It underscores the significant potential of AnMBR technology for widespread adoption in treating real-time wastewater generated by the seafood industry.