Lipase production by solid-state fermentation on distiller's dried grain with solubles in a biorefinery approach: Optimization and techno-economic analysis

Q1 Environmental Science
Daniele Saluti Nunes de Barros , Vanessa Alves Lima Rocha , Camilla Pires de Souza , Rui de Paula Vieira de Castro , Manuela Moore Cardoso , Gabriela Coelho Brêda , Érika Cristina Gonçalves Aguieiras , Denise Maria Guimarães Freire
{"title":"Lipase production by solid-state fermentation on distiller's dried grain with solubles in a biorefinery approach: Optimization and techno-economic analysis","authors":"Daniele Saluti Nunes de Barros ,&nbsp;Vanessa Alves Lima Rocha ,&nbsp;Camilla Pires de Souza ,&nbsp;Rui de Paula Vieira de Castro ,&nbsp;Manuela Moore Cardoso ,&nbsp;Gabriela Coelho Brêda ,&nbsp;Érika Cristina Gonçalves Aguieiras ,&nbsp;Denise Maria Guimarães Freire","doi":"10.1016/j.biteb.2024.102015","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a biorefinery process from the corn ethanol industry to produce a low-cost dry-fermented solid biocatalyst and enzymatic biodiesel. The fermentation conditions (temperature, moisture, and spore concentration) were optimized through a design experiment. In the best conditions (27 °C, 65 % moisture content, and 1.00 × 10<sup>7</sup> spores from <em>Rhizopus oryzae</em>/g of solid), it was possible to obtain 80 % conversion of oleic acid and ethanol to ester in 24 h of reaction. A solid pre-inoculum strategy was used to scale up the biocatalyst production by 100 times. The simulation in three different scenarios and its techno-economic analysis – made using the software SuperPro Designer – answered questions related to the feasibility of the biocatalyst production. In the best scenario, the unitary production cost was US$ 3.47/kg. Selling this product for US$ 7.30/kg would represent more than 100 % profit and a payback time of 1.46 years.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"29 ","pages":"Article 102015"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X24002561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a biorefinery process from the corn ethanol industry to produce a low-cost dry-fermented solid biocatalyst and enzymatic biodiesel. The fermentation conditions (temperature, moisture, and spore concentration) were optimized through a design experiment. In the best conditions (27 °C, 65 % moisture content, and 1.00 × 107 spores from Rhizopus oryzae/g of solid), it was possible to obtain 80 % conversion of oleic acid and ethanol to ester in 24 h of reaction. A solid pre-inoculum strategy was used to scale up the biocatalyst production by 100 times. The simulation in three different scenarios and its techno-economic analysis – made using the software SuperPro Designer – answered questions related to the feasibility of the biocatalyst production. In the best scenario, the unitary production cost was US$ 3.47/kg. Selling this product for US$ 7.30/kg would represent more than 100 % profit and a payback time of 1.46 years.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信