Production and characterization of nervous necrosis virus vaccine antigens in wild type and CRISPR/Cas9 genome edited Nicotiana benthamiana and edible crop lettuce Lactuca sativa
Iva Andrasevic , Hang Su , Espen Rimstad , Jihong Liu Clarke
{"title":"Production and characterization of nervous necrosis virus vaccine antigens in wild type and CRISPR/Cas9 genome edited Nicotiana benthamiana and edible crop lettuce Lactuca sativa","authors":"Iva Andrasevic , Hang Su , Espen Rimstad , Jihong Liu Clarke","doi":"10.1016/j.aqrep.2024.102546","DOIUrl":null,"url":null,"abstract":"<div><div>Aquaculture constitutes an important source of protein, essential omega-3 fatty acids and bioavailable micronutrients for humans. The increasing demand for aquatic food products has resulted in more intensive farming practices leading to negative impacts on aquaculture organisms and marine ecosystems. Disease outbreaks cause more than 6 billion USD loss worldwide annually and possess high risks of spreading to the wild fauna especially by viral infections. Vaccination has been proved to be effective to mitigate these problems and widely used as prophylaxis in aquaculture, but available vaccines against viral nervous necrosis (VNN) are limited currently. Plant platforms have several advantages and have been proposed as an alternative biomanufacturing method for vaccine antigens. In the present study, we report: (1) selection and design of recombinant plasmids encoding the capsid proteins (CPs) of two genotypes of NNV, red-spotted grouper nervous necrosis virus (RGNNV) and striped jack nervous necrosis virus (SJNNV); (2) design and optimization of plasmids for transient expression of NNV vaccine antigens in wild type <em>Nicotiana benthamiana</em>, CRISPR/Cas9 genome edited <em>Nicotiana benthamiana</em> and Lactuca sativa; (3) test of different Agrobacterium strains (LBA4404 and AGL1) for effective production of NNVCPs; (4) the expression patterns of NNVCPs over time post infiltration for different plants and cultivars; (5) successful production of NNV antigens in <em>N. benthamiana</em> lines and lettuce cultivars, indicating the potential of the plants as antigen producers in the development of a plant-based vaccine against VNN.</div></div>","PeriodicalId":8103,"journal":{"name":"Aquaculture Reports","volume":"40 ","pages":"Article 102546"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Reports","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352513424006343","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaculture constitutes an important source of protein, essential omega-3 fatty acids and bioavailable micronutrients for humans. The increasing demand for aquatic food products has resulted in more intensive farming practices leading to negative impacts on aquaculture organisms and marine ecosystems. Disease outbreaks cause more than 6 billion USD loss worldwide annually and possess high risks of spreading to the wild fauna especially by viral infections. Vaccination has been proved to be effective to mitigate these problems and widely used as prophylaxis in aquaculture, but available vaccines against viral nervous necrosis (VNN) are limited currently. Plant platforms have several advantages and have been proposed as an alternative biomanufacturing method for vaccine antigens. In the present study, we report: (1) selection and design of recombinant plasmids encoding the capsid proteins (CPs) of two genotypes of NNV, red-spotted grouper nervous necrosis virus (RGNNV) and striped jack nervous necrosis virus (SJNNV); (2) design and optimization of plasmids for transient expression of NNV vaccine antigens in wild type Nicotiana benthamiana, CRISPR/Cas9 genome edited Nicotiana benthamiana and Lactuca sativa; (3) test of different Agrobacterium strains (LBA4404 and AGL1) for effective production of NNVCPs; (4) the expression patterns of NNVCPs over time post infiltration for different plants and cultivars; (5) successful production of NNV antigens in N. benthamiana lines and lettuce cultivars, indicating the potential of the plants as antigen producers in the development of a plant-based vaccine against VNN.
Aquaculture ReportsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
5.90
自引率
8.10%
发文量
469
审稿时长
77 days
期刊介绍:
Aquaculture Reports will publish original research papers and reviews documenting outstanding science with a regional context and focus, answering the need for high quality information on novel species, systems and regions in emerging areas of aquaculture research and development, such as integrated multi-trophic aquaculture, urban aquaculture, ornamental, unfed aquaculture, offshore aquaculture and others. Papers having industry research as priority and encompassing product development research or current industry practice are encouraged.