Yujie Cheng , Yidi Shen , Qi An , Minqiang Jiang , Chenguang Huang , William A. Goddard III , Xianqian Wu
{"title":"Energy dissipation mechanism of G-phase and L-phase metallic glass nanofilms subjected to high-velocity nano-ballistic impact","authors":"Yujie Cheng , Yidi Shen , Qi An , Minqiang Jiang , Chenguang Huang , William A. Goddard III , Xianqian Wu","doi":"10.1016/j.eml.2024.102280","DOIUrl":null,"url":null,"abstract":"<div><div>The energy dissipation mechanisms of G-phase and L-phase metallic glass nanofilms subjected to high-velocity nano-particle impact were investigated by molecular dynamics (MD) simulations. We identified the phase transition from G-phase to L-phase in which the locally ordered core structures transform to liquid-like structures due to local mechanical melting and adiabatic heating of the G-phase under high strain rate impact. The appearance of phase transition provides a new channel for energy dissipation, thus the relatively thicker G-phase nanofilm with ordered core structures has a higher specific energy absorption compared with the L-phase film at the same thickness and impact velocity. However, if the thickness decreases below the characteristic length scale of the heterogeneous structure, the broken core structures in the G-phase films act as prefabricated defects that fail prematurely when subjected to impact, resulting in less impact resistance of the G-phase film compared to the L-phase film. This paper provides a useful method for improving the impact resistance of metallic glass films by tailoring the microstructures.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"74 ","pages":"Article 102280"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001603","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The energy dissipation mechanisms of G-phase and L-phase metallic glass nanofilms subjected to high-velocity nano-particle impact were investigated by molecular dynamics (MD) simulations. We identified the phase transition from G-phase to L-phase in which the locally ordered core structures transform to liquid-like structures due to local mechanical melting and adiabatic heating of the G-phase under high strain rate impact. The appearance of phase transition provides a new channel for energy dissipation, thus the relatively thicker G-phase nanofilm with ordered core structures has a higher specific energy absorption compared with the L-phase film at the same thickness and impact velocity. However, if the thickness decreases below the characteristic length scale of the heterogeneous structure, the broken core structures in the G-phase films act as prefabricated defects that fail prematurely when subjected to impact, resulting in less impact resistance of the G-phase film compared to the L-phase film. This paper provides a useful method for improving the impact resistance of metallic glass films by tailoring the microstructures.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.