{"title":"On the generalized Turán number of star forests","authors":"Yan-Jiao Liu, Jian-Hua Yin","doi":"10.1016/j.dam.2024.12.024","DOIUrl":null,"url":null,"abstract":"<div><div>The generalized Turán number ex<span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><mi>H</mi><mo>)</mo></mrow></math></span> is defined to be the maximum number of copies of a complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> in any <span><math><mi>H</mi></math></span>-free graph on <span><math><mi>n</mi></math></span> vertices. Let <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span> denote the star on <span><math><mrow><mi>ℓ</mi><mo>+</mo><mn>1</mn></mrow></math></span> vertices, and let <span><math><mrow><mi>k</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></mrow></math></span> denote the disjoint union of <span><math><mi>k</mi></math></span> copies of <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span>. Gan et al. (2015) and Chase (2020) determined ex<span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, <span><math><mrow><mi>ℓ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. In this paper, we consider to investigate the generalized Turán number of star forests. We determine ex<span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mn>2</mn><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>, and ex<span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo>∪</mo><msub><mrow><mi>S</mi></mrow><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mn>2</mn><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><mn>2</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>3</mn><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></math></span>. Those imply ex<span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><mn>2</mn><msub><mrow><mi>S</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>4</mn></mrow></math></span>, <span><math><mrow><mi>ℓ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. Moreover, we also determine ex<span><math><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>,</mo><mn>3</mn><msub><mrow><mi>S</mi></mrow><mrow><mi>ℓ</mi></mrow></msub><mo>)</mo></mrow></math></span> for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>5</mn></mrow></math></span>, <span><math><mrow><mi>ℓ</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"364 ","pages":"Pages 213-221"},"PeriodicalIF":1.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24005420","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The generalized Turán number ex is defined to be the maximum number of copies of a complete graph in any -free graph on vertices. Let denote the star on vertices, and let denote the disjoint union of copies of . Gan et al. (2015) and Chase (2020) determined ex for , and . In this paper, we consider to investigate the generalized Turán number of star forests. We determine ex for , and , and ex for , and . Those imply ex for , and . Moreover, we also determine ex for , and .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.