{"title":"A Trojan horse for climate policy: Assessing carbon lock-ins through the Carbon Capture and Storage-Hydrogen-Nexus in Europe","authors":"Lena Faber, Henner Busch, Lina Lefstad","doi":"10.1016/j.erss.2024.103881","DOIUrl":null,"url":null,"abstract":"<div><div>The global energy landscape is entrenched in fossil fuels, shaping modern life profoundly. Germany, a prominent example, grapples with transitioning from its fossil-fuelled infrastructure despite governmental support for decarbonization. Carbon capture and storage (CCS) and hydrogen appear as crucial tools in this transition. A recent partnership between Germany and Norway seeks to leverage Norway's CCS and hydrogen expertise to aid Germany's decarbonization efforts. However, CCS faces criticism for potential mitigation deterrence and carbon lock-ins, perpetuating fossil fuel reliance. This study critically analyses the Norwegian-German CCS-Hydrogen-Nexus, focusing on potential carbon lock-ins. By examining specific projects, institutional frameworks, and industry involvement, we aim to elucidate the partnership's implications for carbon lock-ins. This critical case holds significance for Europe's largest economy and offers insights applicable to CCS technology globally. We find that the current setup perpetuates existing carbon lock-ins both in Germany and Norway. Central problems are the interchangeability of blue and green hydrogen, asset specificity of pipeline and pumping infrastructure and the central role which actors from the fossil fuel industry play in the rollout of the CCS-Hydrogen-Nexus. Our concern is that this approach might entrench the energy system in a socially unjust state. EU policy on blue hydrogen emerged as a factor that helps to avoid carbon lock-ins.</div></div>","PeriodicalId":48384,"journal":{"name":"Energy Research & Social Science","volume":"120 ","pages":"Article 103881"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Research & Social Science","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214629624004729","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
The global energy landscape is entrenched in fossil fuels, shaping modern life profoundly. Germany, a prominent example, grapples with transitioning from its fossil-fuelled infrastructure despite governmental support for decarbonization. Carbon capture and storage (CCS) and hydrogen appear as crucial tools in this transition. A recent partnership between Germany and Norway seeks to leverage Norway's CCS and hydrogen expertise to aid Germany's decarbonization efforts. However, CCS faces criticism for potential mitigation deterrence and carbon lock-ins, perpetuating fossil fuel reliance. This study critically analyses the Norwegian-German CCS-Hydrogen-Nexus, focusing on potential carbon lock-ins. By examining specific projects, institutional frameworks, and industry involvement, we aim to elucidate the partnership's implications for carbon lock-ins. This critical case holds significance for Europe's largest economy and offers insights applicable to CCS technology globally. We find that the current setup perpetuates existing carbon lock-ins both in Germany and Norway. Central problems are the interchangeability of blue and green hydrogen, asset specificity of pipeline and pumping infrastructure and the central role which actors from the fossil fuel industry play in the rollout of the CCS-Hydrogen-Nexus. Our concern is that this approach might entrench the energy system in a socially unjust state. EU policy on blue hydrogen emerged as a factor that helps to avoid carbon lock-ins.
期刊介绍:
Energy Research & Social Science (ERSS) is a peer-reviewed international journal that publishes original research and review articles examining the relationship between energy systems and society. ERSS covers a range of topics revolving around the intersection of energy technologies, fuels, and resources on one side and social processes and influences - including communities of energy users, people affected by energy production, social institutions, customs, traditions, behaviors, and policies - on the other. Put another way, ERSS investigates the social system surrounding energy technology and hardware. ERSS is relevant for energy practitioners, researchers interested in the social aspects of energy production or use, and policymakers.
Energy Research & Social Science (ERSS) provides an interdisciplinary forum to discuss how social and technical issues related to energy production and consumption interact. Energy production, distribution, and consumption all have both technical and human components, and the latter involves the human causes and consequences of energy-related activities and processes as well as social structures that shape how people interact with energy systems. Energy analysis, therefore, needs to look beyond the dimensions of technology and economics to include these social and human elements.