{"title":"A distributed stochastic forward-backward-forward self-adaptive algorithm for Cartesian stochastic variational inequalities","authors":"Liya Liu , Xiaolong Qin , Jen-Chih Yao","doi":"10.1016/j.apnum.2025.01.003","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a Cartesian stochastic variational inequality with a high dimensional solution space. This mathematical formulation captures a wide range of optimization problems including stochastic Nash games and stochastic minimization problems. By combining the advantages of the forward-backward-forward method and the stochastic approximated method, a novel distributed algorithm is developed for addressing this large-scale problem without any kind of monotonicity. A salient feature of the proposed algorithm is to compute two independent queries of a stochastic oracle at each iteration. The main contributions include: (i) The necessary condition imposed on the involved operator is related merely to the Lipschitz continuity, which are quite general. (ii) At each iteration, the suggested algorithm only requires one computation of the projection onto each feasible set, which can be easily evaluated. (iii) The distributed implementation of the stochastic approximation based Armijo-type line search strategy is adopted to weaken the line search condition and define variable adaptive non-monotonic stepsizes, when the Lipschitz constant is unknown. Some theoretical results of the almost sure convergence, the optimal rate statement, and the oracle complexity bound are established with conditions weaker than the conditions of other methods studied in the literature. Finally, preliminary numerical results are presented to show the efficiency and the competitiveness of our algorithm.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"211 ","pages":"Pages 17-41"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000030","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider a Cartesian stochastic variational inequality with a high dimensional solution space. This mathematical formulation captures a wide range of optimization problems including stochastic Nash games and stochastic minimization problems. By combining the advantages of the forward-backward-forward method and the stochastic approximated method, a novel distributed algorithm is developed for addressing this large-scale problem without any kind of monotonicity. A salient feature of the proposed algorithm is to compute two independent queries of a stochastic oracle at each iteration. The main contributions include: (i) The necessary condition imposed on the involved operator is related merely to the Lipschitz continuity, which are quite general. (ii) At each iteration, the suggested algorithm only requires one computation of the projection onto each feasible set, which can be easily evaluated. (iii) The distributed implementation of the stochastic approximation based Armijo-type line search strategy is adopted to weaken the line search condition and define variable adaptive non-monotonic stepsizes, when the Lipschitz constant is unknown. Some theoretical results of the almost sure convergence, the optimal rate statement, and the oracle complexity bound are established with conditions weaker than the conditions of other methods studied in the literature. Finally, preliminary numerical results are presented to show the efficiency and the competitiveness of our algorithm.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.