Inexact proximal penalty alternating linearization decomposition scheme of nonsmooth convex constrained optimization problems

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Si-Da Lin , Ya-Jing Zhang , Ming Huang , Jin-Long Yuan , Hong-Han Bei
{"title":"Inexact proximal penalty alternating linearization decomposition scheme of nonsmooth convex constrained optimization problems","authors":"Si-Da Lin ,&nbsp;Ya-Jing Zhang ,&nbsp;Ming Huang ,&nbsp;Jin-Long Yuan ,&nbsp;Hong-Han Bei","doi":"10.1016/j.apnum.2024.12.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the convex constrained optimization problems are studied via the alternating linearization approach. The objective function <em>f</em> is assumed to be complex, and its exact oracle information (function values and subgradients) is not easy to obtain, while the constraint function <em>h</em> is expected to be “simple” relatively. With the help of the exact penalty function, we present an alternating linearization method with inexact information. In this method, the penalty problem is replaced by two relatively simple linear subproblems with regularized form which are needed to be solved successively in each iteration. An approximate solution is utilized instead of an exact form to solve each of the two subproblems. Moreover, it is proved that the generated sequence converges to some solution of the original problem. The dual form of this approach is discussed and described. Finally, some preliminary numerical test results are reported. Numerical experiences provided show that the inexact scheme has good performance, certificate and reliability.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"211 ","pages":"Pages 42-60"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424003593","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the convex constrained optimization problems are studied via the alternating linearization approach. The objective function f is assumed to be complex, and its exact oracle information (function values and subgradients) is not easy to obtain, while the constraint function h is expected to be “simple” relatively. With the help of the exact penalty function, we present an alternating linearization method with inexact information. In this method, the penalty problem is replaced by two relatively simple linear subproblems with regularized form which are needed to be solved successively in each iteration. An approximate solution is utilized instead of an exact form to solve each of the two subproblems. Moreover, it is proved that the generated sequence converges to some solution of the original problem. The dual form of this approach is discussed and described. Finally, some preliminary numerical test results are reported. Numerical experiences provided show that the inexact scheme has good performance, certificate and reliability.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信