Fish waste valorisation through production of biodiesel and biopolymers for sustainable development: A mini review

Q1 Environmental Science
Mridul Umesh , Vinay Kumar , Kumaresan Priyanka , Preethi Kathirvel , Sreehari Suresh , Adhithya Sankar Santhosh
{"title":"Fish waste valorisation through production of biodiesel and biopolymers for sustainable development: A mini review","authors":"Mridul Umesh ,&nbsp;Vinay Kumar ,&nbsp;Kumaresan Priyanka ,&nbsp;Preethi Kathirvel ,&nbsp;Sreehari Suresh ,&nbsp;Adhithya Sankar Santhosh","doi":"10.1016/j.biteb.2025.102045","DOIUrl":null,"url":null,"abstract":"<div><div>Fish processing waste accounts for one of the major classes of food waste generated worldwide in terms of the high volume of waste generated. The presence of high amounts of organic compounds (proteins: 15–30 %, lipids: 5–20 %) in fish waste makes them highly susceptible to autolysis which when not managed properly pose adverse effects on the environment like production of offensive odor, generation of hydrogen sulfide, higher biological oxygen demand (1000 mg/L to 12,000 mg/L or even higher) (BOD), and multiplication of pathogenic bacteria. Fish waste is rich in lipids and polysaccharides that can be channelized for biodiesel and biopolymer production respectively. Biodiesel refers to the biofuel produced from transesterification of plant and animal fats. Extraction of oils from fish waste followed by transesterification reactions can yield biodiesel through a biorefinery approach. Biorefinery concept emphasizes the conversion of biomass into commercially important byproducts. Biopolymers refers to the natural polymers that can be extracted from the natural sources or produced through microbial fermentation process. Furthermore, commercially important biopolymers like chitosan and polyhydroxyalkanoates (PHAs) can be used as biorefineries. This review work presents the sequential strategies for conversion of fish waste to biodiesel, PHA and chitosan through various physicochemical and biological methods. The review also presents the existing challenges and the future in the fish waste biorefinery concept. The scope of this review is to present a broader concept of integrating fish waste biorefinery for production of multiple value added products like biodiesel and biopolymers.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"29 ","pages":"Article 102045"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X25000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Fish processing waste accounts for one of the major classes of food waste generated worldwide in terms of the high volume of waste generated. The presence of high amounts of organic compounds (proteins: 15–30 %, lipids: 5–20 %) in fish waste makes them highly susceptible to autolysis which when not managed properly pose adverse effects on the environment like production of offensive odor, generation of hydrogen sulfide, higher biological oxygen demand (1000 mg/L to 12,000 mg/L or even higher) (BOD), and multiplication of pathogenic bacteria. Fish waste is rich in lipids and polysaccharides that can be channelized for biodiesel and biopolymer production respectively. Biodiesel refers to the biofuel produced from transesterification of plant and animal fats. Extraction of oils from fish waste followed by transesterification reactions can yield biodiesel through a biorefinery approach. Biorefinery concept emphasizes the conversion of biomass into commercially important byproducts. Biopolymers refers to the natural polymers that can be extracted from the natural sources or produced through microbial fermentation process. Furthermore, commercially important biopolymers like chitosan and polyhydroxyalkanoates (PHAs) can be used as biorefineries. This review work presents the sequential strategies for conversion of fish waste to biodiesel, PHA and chitosan through various physicochemical and biological methods. The review also presents the existing challenges and the future in the fish waste biorefinery concept. The scope of this review is to present a broader concept of integrating fish waste biorefinery for production of multiple value added products like biodiesel and biopolymers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology Reports
Bioresource Technology Reports Environmental Science-Environmental Engineering
CiteScore
7.20
自引率
0.00%
发文量
390
审稿时长
28 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信