Scalable direct manufacturing of a functional multipurpose wrist-hand orthosis using 3D printing

Q3 Medicine
Dhruv Bose , Shubham Gupta , Arnab Chanda
{"title":"Scalable direct manufacturing of a functional multipurpose wrist-hand orthosis using 3D printing","authors":"Dhruv Bose ,&nbsp;Shubham Gupta ,&nbsp;Arnab Chanda","doi":"10.1016/j.stlm.2025.100186","DOIUrl":null,"url":null,"abstract":"<div><div>Spinal cord injury (SCI) is one of the most debilitating injuries with no direct cure. Managing SCI thus becomes a critical task for caregivers and most importantly patients, whose lives are severely hindered both physically and psychologically. Injury at different parts of the spine corroborates to partial or complete motor loss at one or more parts of the body. The current paradigm of recuperative techniques aim at effective splinting coupled with a consistent rehabilitation regimen. This work focused on the development of a novel wrist-hand orthosis using 3D printing to aid patients inflicted by C5-C7 SCI which causes loss of motor function at the distal ends of the upper extremity. An optimized development framework was presented to achieve quick production times, scalability, ergonomics and minimal post processing activities to produce an ultra-low cost orthotic device (∼$2). The Print in Place (PIP) method was employed to diminish all post processing and assembly operations. A unique compliant wrist brace mechanism was introduced. The developed assistive device was assessed via Finite Element Analysis (FEA) prior to manufacturing and the same was verified experimentally, post-manufacturing. Overall, the developed device was found to successfully sustain the designed load requirements. It was anticipated that the use of the aforementioned methods and techniques could greatly enhance the scalability and affordability of 3D printed orthotic devices, especially in low and middle income countries where SCI cases are not only highly prevalent but also neglected, escalating the severity of injury.</div></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"17 ","pages":"Article 100186"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964125000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injury (SCI) is one of the most debilitating injuries with no direct cure. Managing SCI thus becomes a critical task for caregivers and most importantly patients, whose lives are severely hindered both physically and psychologically. Injury at different parts of the spine corroborates to partial or complete motor loss at one or more parts of the body. The current paradigm of recuperative techniques aim at effective splinting coupled with a consistent rehabilitation regimen. This work focused on the development of a novel wrist-hand orthosis using 3D printing to aid patients inflicted by C5-C7 SCI which causes loss of motor function at the distal ends of the upper extremity. An optimized development framework was presented to achieve quick production times, scalability, ergonomics and minimal post processing activities to produce an ultra-low cost orthotic device (∼$2). The Print in Place (PIP) method was employed to diminish all post processing and assembly operations. A unique compliant wrist brace mechanism was introduced. The developed assistive device was assessed via Finite Element Analysis (FEA) prior to manufacturing and the same was verified experimentally, post-manufacturing. Overall, the developed device was found to successfully sustain the designed load requirements. It was anticipated that the use of the aforementioned methods and techniques could greatly enhance the scalability and affordability of 3D printed orthotic devices, especially in low and middle income countries where SCI cases are not only highly prevalent but also neglected, escalating the severity of injury.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信