A bibliometric analysis of publications in 3D printing in surgery from the web of science database

Q3 Medicine
Bitesh Kumar , Anjan Kumar Dhua , Mohit Garg , Vishesh Jain , Devendra Kumar Yadav , Prabudh Goel , Sachit Anand , Divya Jain
{"title":"A bibliometric analysis of publications in 3D printing in surgery from the web of science database","authors":"Bitesh Kumar ,&nbsp;Anjan Kumar Dhua ,&nbsp;Mohit Garg ,&nbsp;Vishesh Jain ,&nbsp;Devendra Kumar Yadav ,&nbsp;Prabudh Goel ,&nbsp;Sachit Anand ,&nbsp;Divya Jain","doi":"10.1016/j.stlm.2025.100188","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Three-dimensional (3D) printing technology, introduced by Charles Hull in 1986, has revolutionized prototyping and is increasingly applied in medical fields such as orthopedics, neurosurgery, and cardiac surgery. The technology offers numerous benefits, including reduced surgical complications, cost-effectiveness, and customization of medical devices. This study provides a bibliometric analysis of 3D printing in surgery, highlighting trends, influential countries, and key research contributors.</div></div><div><h3>Objectives</h3><div>This study aims to analyze the publication landscape of 3D printing in surgery, focusing on key metrics such as annual citation rates, growth trends, citation per year, total citations, source journals, author details, country-wise production, and institutional contributions. The study also aims to explore collaborative patterns at the author, institutional, and country levels and identify core research areas through keyword co-occurrence analysis.</div></div><div><h3>Materials and Methods</h3><div>Data were collected from the Web of Science (WoS) Core Collection on August 13, 2023, including documents published from 2001 to 2022. A total of 3,230 documents were identified and analyzed using VOSviewer and the Bibliometrix R-package. Inclusion criteria encompassed English-language documents related to 3D printing in surgery, while documents published after December 2022 were excluded.</div></div><div><h3>Results</h3><div>The analysis revealed a significant annual growth rate of 20.08 % in publications related to 3D printing in surgery, with peak years being 2022, 2021, and 2020. China and the USA dominate the research output, accounting for approximately 50 % of global publications. Shanghai Jiao Tong University and Sichuan University are leading institutions. Collaborative patterns show strong author linkages and international cooperation, particularly between the USA, China, and England. Keyword co-occurrence analysis identified \"reconstruction,\" \"accuracy,\" and \"additive manufacturing\" as core research areas.</div></div><div><h3>Conclusion</h3><div>This bibliometric analysis provides a comprehensive overview of the research landscape of 3D printing in surgery, emphasizing this technology's rapid growth and significant impact. The insights gained can guide future research, foster collaborations, and inform policy decisions to advance the field. Leading countries and institutions are crucial in driving scientific discoveries and translating research into clinical practice.</div></div>","PeriodicalId":72210,"journal":{"name":"Annals of 3D printed medicine","volume":"17 ","pages":"Article 100188"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of 3D printed medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666964125000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Three-dimensional (3D) printing technology, introduced by Charles Hull in 1986, has revolutionized prototyping and is increasingly applied in medical fields such as orthopedics, neurosurgery, and cardiac surgery. The technology offers numerous benefits, including reduced surgical complications, cost-effectiveness, and customization of medical devices. This study provides a bibliometric analysis of 3D printing in surgery, highlighting trends, influential countries, and key research contributors.

Objectives

This study aims to analyze the publication landscape of 3D printing in surgery, focusing on key metrics such as annual citation rates, growth trends, citation per year, total citations, source journals, author details, country-wise production, and institutional contributions. The study also aims to explore collaborative patterns at the author, institutional, and country levels and identify core research areas through keyword co-occurrence analysis.

Materials and Methods

Data were collected from the Web of Science (WoS) Core Collection on August 13, 2023, including documents published from 2001 to 2022. A total of 3,230 documents were identified and analyzed using VOSviewer and the Bibliometrix R-package. Inclusion criteria encompassed English-language documents related to 3D printing in surgery, while documents published after December 2022 were excluded.

Results

The analysis revealed a significant annual growth rate of 20.08 % in publications related to 3D printing in surgery, with peak years being 2022, 2021, and 2020. China and the USA dominate the research output, accounting for approximately 50 % of global publications. Shanghai Jiao Tong University and Sichuan University are leading institutions. Collaborative patterns show strong author linkages and international cooperation, particularly between the USA, China, and England. Keyword co-occurrence analysis identified "reconstruction," "accuracy," and "additive manufacturing" as core research areas.

Conclusion

This bibliometric analysis provides a comprehensive overview of the research landscape of 3D printing in surgery, emphasizing this technology's rapid growth and significant impact. The insights gained can guide future research, foster collaborations, and inform policy decisions to advance the field. Leading countries and institutions are crucial in driving scientific discoveries and translating research into clinical practice.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of 3D printed medicine
Annals of 3D printed medicine Medicine and Dentistry (General), Materials Science (General)
CiteScore
4.70
自引率
0.00%
发文量
0
审稿时长
131 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信