Microstructure simulation of maraging steel 1.2709 processed by powder bed fusion of metals using a laser beam: A cellular automata approach with varying process parameters

Kai-Uwe Beuerlein , Mohammad Shojaati , Mazyar Ansari , Hannes Panzer , Shahriar Imani Shahabad , Mohsen K. Keshavarz , Michael F. Zaeh , Saeed Maleksaeedi
{"title":"Microstructure simulation of maraging steel 1.2709 processed by powder bed fusion of metals using a laser beam: A cellular automata approach with varying process parameters","authors":"Kai-Uwe Beuerlein ,&nbsp;Mohammad Shojaati ,&nbsp;Mazyar Ansari ,&nbsp;Hannes Panzer ,&nbsp;Shahriar Imani Shahabad ,&nbsp;Mohsen K. Keshavarz ,&nbsp;Michael F. Zaeh ,&nbsp;Saeed Maleksaeedi","doi":"10.1016/j.rinma.2025.100667","DOIUrl":null,"url":null,"abstract":"<div><div>Additive manufacturing via powder bed fusion of metals using a laser beam (PBF-LB/M) enables the fabrication of parts from metal powder with mechanical properties surpassing those of conventional processes. In this manufacturing process, a grain structure that is very sensitive to process parameter modifications and the resulting change in the temperature field is formed. Simulating the solidification microstructure is crucial for understanding process-microstructure relationships and creating digital twins for microstructure engineering and tailoring. This work introduces a cellular automata (CA) methodology for the microstructure simulation of maraging steel 1.2709 processed by PBF-LB/M. A high-resolution moving heat source model, based on the finite element method, was set up to capture the temperature field. The solidification microstructure was simulated by a two-dimensional CA model. Ten sets of process parameters have been used to produce single tracks experimentally to validate the CA model. The microstructure of these sets has been characterized by optical and scanning electron microscopy. The CA model successfully captures the essential solidification characteristics. The grain sizes have demonstrated a significant sensitivity to initial conditions. In-depth analysis has revealed that process parameters and thermal conditions, rather than the energy density, critically influence the grain size and the aspect ratio. Meanwhile, the grain alignment angle has shown no explicit dependency on process parameters, underscoring the complex dynamics governing microstructural evolution. This methodology paves the way for advancing material design in various industries by enabling a precise control over mechanical properties through microstructure tailoring.</div></div>","PeriodicalId":101087,"journal":{"name":"Results in Materials","volume":"25 ","pages":"Article 100667"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590048X25000123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Additive manufacturing via powder bed fusion of metals using a laser beam (PBF-LB/M) enables the fabrication of parts from metal powder with mechanical properties surpassing those of conventional processes. In this manufacturing process, a grain structure that is very sensitive to process parameter modifications and the resulting change in the temperature field is formed. Simulating the solidification microstructure is crucial for understanding process-microstructure relationships and creating digital twins for microstructure engineering and tailoring. This work introduces a cellular automata (CA) methodology for the microstructure simulation of maraging steel 1.2709 processed by PBF-LB/M. A high-resolution moving heat source model, based on the finite element method, was set up to capture the temperature field. The solidification microstructure was simulated by a two-dimensional CA model. Ten sets of process parameters have been used to produce single tracks experimentally to validate the CA model. The microstructure of these sets has been characterized by optical and scanning electron microscopy. The CA model successfully captures the essential solidification characteristics. The grain sizes have demonstrated a significant sensitivity to initial conditions. In-depth analysis has revealed that process parameters and thermal conditions, rather than the energy density, critically influence the grain size and the aspect ratio. Meanwhile, the grain alignment angle has shown no explicit dependency on process parameters, underscoring the complex dynamics governing microstructural evolution. This methodology paves the way for advancing material design in various industries by enabling a precise control over mechanical properties through microstructure tailoring.
激光粉末床熔合马氏体时效钢1.2709的显微组织模拟:一种具有不同工艺参数的元胞自动机方法
通过使用激光束(PBF-LB/M)的粉末床熔融金属的增材制造使金属粉末制造的零件具有超越传统工艺的机械性能。在这种制造过程中,形成了对工艺参数修改和由此产生的温度场变化非常敏感的晶粒结构。模拟凝固组织对于理解过程-组织关系以及为组织工程和定制创建数字孪生体至关重要。本文介绍了一种元胞自动机(CA)方法,用于PBF-LB/M处理马氏体时效钢1.2709的微观组织模拟。建立了基于有限元法的高分辨率移动热源模型,对温度场进行了模拟。采用二维CA模型模拟了凝固组织。用10组工艺参数进行了单轨实验,验证了CA模型的有效性。用光学显微镜和扫描电镜对其微观结构进行了表征。CA模型成功地捕获了基本的凝固特性。晶粒尺寸对初始条件具有显著的敏感性。深入分析表明,工艺参数和热条件,而不是能量密度,关键影响晶粒尺寸和长径比。同时,晶粒取向角对工艺参数没有明显的依赖性,表明微观组织演化的复杂动力学控制。该方法通过微观结构定制实现对机械性能的精确控制,为推进各行业的材料设计铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信