{"title":"BODIPY based nanomedicine for cancer imaging and phototherapy","authors":"Dapeng Chen , Tian Zhang , Xiaochen Dong , Xiaozhou Mou","doi":"10.1016/j.colcom.2024.100816","DOIUrl":null,"url":null,"abstract":"<div><div>Optical materials with imaging and phototherapy functionalities have offered promising perspectives for precise tumor treatment. Among these materials, boron-dipyrromethene (BODIPY) photosensitizers have presented potential for cancer theranostics because of their long wavelength absorption/fluorescence, tunable reactive oxygen species quantum yield, excellent photostability, and good biocompatibility. The development of nanotechnology in combination with BODIPY provided researchers with nanomedicines passively targeting solid tumors via enhanced penetration and retention effect, which greatly improved the efficacy of cancer photo-theranostics. In this review, we summarize our contributions for the development of BODIPY nanomedicine for cancer imaging and phototherapy. We firstly introduce our comprehensive routes for BODIPY synthesis and the preparation strategies of BODIPY nanomedicine. Thereafter, we give an in-depth discussion on the photo physicochemical properties of BODIPY nanomedicines, focusing on their applications in fluorescence/photothermal/photoacoustic imaging, photodynamic therapy, phototherapy, and combined phototherapy/vascular disruption therapy. Lastly, we look at the perspectives and challenges for the development of next-generation BODIPY nanomedicines.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100816"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000517","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Optical materials with imaging and phototherapy functionalities have offered promising perspectives for precise tumor treatment. Among these materials, boron-dipyrromethene (BODIPY) photosensitizers have presented potential for cancer theranostics because of their long wavelength absorption/fluorescence, tunable reactive oxygen species quantum yield, excellent photostability, and good biocompatibility. The development of nanotechnology in combination with BODIPY provided researchers with nanomedicines passively targeting solid tumors via enhanced penetration and retention effect, which greatly improved the efficacy of cancer photo-theranostics. In this review, we summarize our contributions for the development of BODIPY nanomedicine for cancer imaging and phototherapy. We firstly introduce our comprehensive routes for BODIPY synthesis and the preparation strategies of BODIPY nanomedicine. Thereafter, we give an in-depth discussion on the photo physicochemical properties of BODIPY nanomedicines, focusing on their applications in fluorescence/photothermal/photoacoustic imaging, photodynamic therapy, phototherapy, and combined phototherapy/vascular disruption therapy. Lastly, we look at the perspectives and challenges for the development of next-generation BODIPY nanomedicines.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.