Nuan Li , Xiaofeng Han , Xiaoli Mai , Peng Wang , Fangxu Wang , Linyuan Wu , Yuanyuan Xie , Bin Wang
{"title":"Iron biomineralization by mediation of clMagR/clCry4 protein contribute to T2 contrast enhanced in MRI","authors":"Nuan Li , Xiaofeng Han , Xiaoli Mai , Peng Wang , Fangxu Wang , Linyuan Wu , Yuanyuan Xie , Bin Wang","doi":"10.1016/j.colcom.2024.100810","DOIUrl":null,"url":null,"abstract":"<div><div>Recent findings have sparked great interest in MagR/Cry4 protein that underpin animal magnetoreception. We tried to make progress in characterizing the <em>Columba livia</em> clMagR/clCry4, and connecting its properties to biological impacts. Throughout natural evolution, new functions of protein were never constructed from scratch, but from pre-existing parts. The clMagR/clCry4 was certainly not an exception. By employing synthetic biology, protein heterologous expression approach allowed protein function to be borrowed from nature to study their new traits. We introduced clMagR/clCry4 into the natural bacteria constructing the recombinant bacteria that perform biomineralization process. Our current work efforts were focused on investigating iron biomineralization in clMagR/clCry4 using electron microscopy. This is only one study, thus far, that describes clMagR/clCry4 deem as a likely candidate as iron biomineralization protein. Notably, iron biomineralization brings clMagR/clCry4 closer to its potential magnetoreception. Additionally, the obtained iron biominerals have shown a great promise to serve as <em>T</em><sub>2</sub> contrast agents for MRI application.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100810"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000451","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent findings have sparked great interest in MagR/Cry4 protein that underpin animal magnetoreception. We tried to make progress in characterizing the Columba livia clMagR/clCry4, and connecting its properties to biological impacts. Throughout natural evolution, new functions of protein were never constructed from scratch, but from pre-existing parts. The clMagR/clCry4 was certainly not an exception. By employing synthetic biology, protein heterologous expression approach allowed protein function to be borrowed from nature to study their new traits. We introduced clMagR/clCry4 into the natural bacteria constructing the recombinant bacteria that perform biomineralization process. Our current work efforts were focused on investigating iron biomineralization in clMagR/clCry4 using electron microscopy. This is only one study, thus far, that describes clMagR/clCry4 deem as a likely candidate as iron biomineralization protein. Notably, iron biomineralization brings clMagR/clCry4 closer to its potential magnetoreception. Additionally, the obtained iron biominerals have shown a great promise to serve as T2 contrast agents for MRI application.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.