{"title":"Two efficient iteration methods for solving the absolute value equations","authors":"Xiaohui Yu , Qingbiao Wu","doi":"10.1016/j.apnum.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>Two efficient iteration methods are proposed for solving the absolute value equation which are the accelerated generalized SOR-like (AGSOR-like) iteration method and the preconditioned generalized SOR-like (PGSOR-like) iteration method. We prove the convergence of the two proposed iterative methods after applying some qualification conditions to the parameters involved. We also discuss the optimal values of the parameters involved in the two methods. Also, some numerical experiments demonstrate the practicability, robustness and high efficiency of the two new methods. In addition, applying the optimal parameter values obtained from theoretical analysis to the PGSOR-like method, it can give solutions with high accuracy after a small number of iterations, demonstrating significant advantages.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 148-159"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002769","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Two efficient iteration methods are proposed for solving the absolute value equation which are the accelerated generalized SOR-like (AGSOR-like) iteration method and the preconditioned generalized SOR-like (PGSOR-like) iteration method. We prove the convergence of the two proposed iterative methods after applying some qualification conditions to the parameters involved. We also discuss the optimal values of the parameters involved in the two methods. Also, some numerical experiments demonstrate the practicability, robustness and high efficiency of the two new methods. In addition, applying the optimal parameter values obtained from theoretical analysis to the PGSOR-like method, it can give solutions with high accuracy after a small number of iterations, demonstrating significant advantages.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.