Investigating the synergistic impact of freeze-thaw cycles and deicing salts on the properties of cementitious composites incorporating natural fibers and fly ash
{"title":"Investigating the synergistic impact of freeze-thaw cycles and deicing salts on the properties of cementitious composites incorporating natural fibers and fly ash","authors":"Ildiko Merta , Vesna Zalar Serjun , Alenka Mauko Pranjić , Aljoša Šajna , Mateja Štefančič , Bojan Poletanović , Farshad Ameri , Ana Mladenović","doi":"10.1016/j.clet.2024.100853","DOIUrl":null,"url":null,"abstract":"<div><div>In cold climates, concrete structures confront durability challenges due to harsh conditions. This study evaluates the effects of incorporating natural fibers, such as hemp and flax fibers (at 1 vol%), and partially replacing cement with fly ash (at 25 and 50 wt%) on the properties of cementitious composites subjected to accelerated aging under freeze-thaw cycles and deicing salts.</div><div>Findings reveal that natural fibers enhance the freeze-thaw resistance, reducing deterioration (scaling) to 5–8% after 56 cycles. When mortars were subjected to accelerated freeze-thaw cycles, the compressive strength of plain mortar significantly decreased (up to 57%). However, adding natural fibers to the matrix substantially reduced its compressive strength loss. In the case of flexural strength, plain mortars experienced 33% loss, while hemp, flax, and polypropylene fiber mortars showed only 13%, 23%, and 10% losses, respectively. Furthermore, mortars experience a notable enhancement in their energy absorption capacity when reinforced with natural fibers, particularly with hemp fibers (up to 348% higher than plain mortar).</div><div>Under harsh conditions, hemp and flax-reinforced mortars, with 25 wt% fly ash replacement, lose the compressive strength significantly however still demonstrate an alternative to synthetic fibers in terms of flexural strength. Even with 25 wt% of fly ash, mortars with natural fiber reinforcement display significantly superior energy absorption capacities compared to plain mortars (up to 48%).</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"24 ","pages":"Article 100853"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824001332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
In cold climates, concrete structures confront durability challenges due to harsh conditions. This study evaluates the effects of incorporating natural fibers, such as hemp and flax fibers (at 1 vol%), and partially replacing cement with fly ash (at 25 and 50 wt%) on the properties of cementitious composites subjected to accelerated aging under freeze-thaw cycles and deicing salts.
Findings reveal that natural fibers enhance the freeze-thaw resistance, reducing deterioration (scaling) to 5–8% after 56 cycles. When mortars were subjected to accelerated freeze-thaw cycles, the compressive strength of plain mortar significantly decreased (up to 57%). However, adding natural fibers to the matrix substantially reduced its compressive strength loss. In the case of flexural strength, plain mortars experienced 33% loss, while hemp, flax, and polypropylene fiber mortars showed only 13%, 23%, and 10% losses, respectively. Furthermore, mortars experience a notable enhancement in their energy absorption capacity when reinforced with natural fibers, particularly with hemp fibers (up to 348% higher than plain mortar).
Under harsh conditions, hemp and flax-reinforced mortars, with 25 wt% fly ash replacement, lose the compressive strength significantly however still demonstrate an alternative to synthetic fibers in terms of flexural strength. Even with 25 wt% of fly ash, mortars with natural fiber reinforcement display significantly superior energy absorption capacities compared to plain mortars (up to 48%).