Comparative analysis of pedestrian volume models: Agent-based models, machine learning methods and multiple regression analysis

IF 7.1 1区 地球科学 Q1 ENVIRONMENTAL STUDIES
Lior Wolpert, Itzhak Omer
{"title":"Comparative analysis of pedestrian volume models: Agent-based models, machine learning methods and multiple regression analysis","authors":"Lior Wolpert,&nbsp;Itzhak Omer","doi":"10.1016/j.compenvurbsys.2024.102238","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrian flow distributions can inform planning for walkability and improve understanding of factors that influence pedestrian activity. However, detailed data is rarely available so pedestrian volume models, commonly relying on the Space Syntax framework, are often utilized to predict pedestrian volumes. This study compares the performance and dominant variables of three modelling families – multiple regression analyses, machine learning models, and agent-based models – in Tel Aviv-Yafo, Israel. Using 247 flow observations, optimal models from each family were fitted and validated for 3 separate areas that differ in their urban growth and morphological characteristics, as well for the whole city. Results showed that ensemble-based machine learning models were best for city-wide predictions while agent-based models had an advantage at the local scale of neighborhoods – especially in neighborhoods that did not develop in a self-organized process. Regression analyses fell short for all areas, even when using principal component analysis to reduce multicollinearity and overfitting. These differences are attributed to the relative influence of cognitive-behavioral and structural factors on pedestrian flows: agent-based models outperform statistical models in individual areas, where behavior is captured more accurately using a small set of cognitive-behavioral parameters. Statistical models are dominant in the city-wide context, where structural variables can predict aggregate patterns. This is crucially important when evaluating the distribution of pedestrians in a planned urban environment. Overall, our results indicate that stepwise regression are not sufficient for pedestrian volume modelling, that agent-based models better capture complex interactions between independent variables, and that machine learning models have a strong potential for city-wide pedestrian volume modelling.</div></div>","PeriodicalId":48241,"journal":{"name":"Computers Environment and Urban Systems","volume":"117 ","pages":"Article 102238"},"PeriodicalIF":7.1000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers Environment and Urban Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0198971524001674","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0

Abstract

Pedestrian flow distributions can inform planning for walkability and improve understanding of factors that influence pedestrian activity. However, detailed data is rarely available so pedestrian volume models, commonly relying on the Space Syntax framework, are often utilized to predict pedestrian volumes. This study compares the performance and dominant variables of three modelling families – multiple regression analyses, machine learning models, and agent-based models – in Tel Aviv-Yafo, Israel. Using 247 flow observations, optimal models from each family were fitted and validated for 3 separate areas that differ in their urban growth and morphological characteristics, as well for the whole city. Results showed that ensemble-based machine learning models were best for city-wide predictions while agent-based models had an advantage at the local scale of neighborhoods – especially in neighborhoods that did not develop in a self-organized process. Regression analyses fell short for all areas, even when using principal component analysis to reduce multicollinearity and overfitting. These differences are attributed to the relative influence of cognitive-behavioral and structural factors on pedestrian flows: agent-based models outperform statistical models in individual areas, where behavior is captured more accurately using a small set of cognitive-behavioral parameters. Statistical models are dominant in the city-wide context, where structural variables can predict aggregate patterns. This is crucially important when evaluating the distribution of pedestrians in a planned urban environment. Overall, our results indicate that stepwise regression are not sufficient for pedestrian volume modelling, that agent-based models better capture complex interactions between independent variables, and that machine learning models have a strong potential for city-wide pedestrian volume modelling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.30
自引率
7.40%
发文量
111
审稿时长
32 days
期刊介绍: Computers, Environment and Urban Systemsis an interdisciplinary journal publishing cutting-edge and innovative computer-based research on environmental and urban systems, that privileges the geospatial perspective. The journal welcomes original high quality scholarship of a theoretical, applied or technological nature, and provides a stimulating presentation of perspectives, research developments, overviews of important new technologies and uses of major computational, information-based, and visualization innovations. Applied and theoretical contributions demonstrate the scope of computer-based analysis fostering a better understanding of environmental and urban systems, their spatial scope and their dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信