Rapid SERS detection of antimony using a superparamagnetic FA@MIL-101(Fe) composite substrate

IF 9 Q1 ENVIRONMENTAL SCIENCES
Zhenli Sun , Jianghong Tang , Xunlong Ji , Jingjing Du
{"title":"Rapid SERS detection of antimony using a superparamagnetic FA@MIL-101(Fe) composite substrate","authors":"Zhenli Sun ,&nbsp;Jianghong Tang ,&nbsp;Xunlong Ji ,&nbsp;Jingjing Du","doi":"10.1016/j.enceco.2024.12.007","DOIUrl":null,"url":null,"abstract":"<div><div>The pollution of antimony (Sb) and its accumulation as a persistent toxic substance (PTS) within environmental systems, leading to substantial hazards for ecosystems and public health. Therefore, developing rapid and sensitive methods for Sb detection is essential for mitigating its environmental impact. SERS presents a promising approach for detecting Sb, attributed to its high sensitivity and ability to capture distinct molecular fingerprints. However, traditional SERS substrates have struggled with effective detection because of weak interactions between Sb and traditional SERS substrate. To address this issue, a FA@MIL-101(Fe) composite combining Fe₃O₄’s magnetic properties and MIL-101(Fe)’s strong adsorption was synthesized, significantly enhancing Sb(III) detection. This substrate showed high sensitivity and selectivity, achieving a detection limit below 4 × 10<sup>−8</sup> M, while effectively minimizing interference from other ions. Additionally, the substrate maintained long-term stability, consistently performing over 21 days. The FA@MIL-101(Fe) composite substrate offers a versatile and efficient platform for Sb(III) detection, providing broad potential for monitoring PTS in environmental applications.</div></div>","PeriodicalId":100480,"journal":{"name":"Environmental Chemistry and Ecotoxicology","volume":"7 ","pages":"Pages 221-228"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry and Ecotoxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590182624000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The pollution of antimony (Sb) and its accumulation as a persistent toxic substance (PTS) within environmental systems, leading to substantial hazards for ecosystems and public health. Therefore, developing rapid and sensitive methods for Sb detection is essential for mitigating its environmental impact. SERS presents a promising approach for detecting Sb, attributed to its high sensitivity and ability to capture distinct molecular fingerprints. However, traditional SERS substrates have struggled with effective detection because of weak interactions between Sb and traditional SERS substrate. To address this issue, a FA@MIL-101(Fe) composite combining Fe₃O₄’s magnetic properties and MIL-101(Fe)’s strong adsorption was synthesized, significantly enhancing Sb(III) detection. This substrate showed high sensitivity and selectivity, achieving a detection limit below 4 × 10−8 M, while effectively minimizing interference from other ions. Additionally, the substrate maintained long-term stability, consistently performing over 21 days. The FA@MIL-101(Fe) composite substrate offers a versatile and efficient platform for Sb(III) detection, providing broad potential for monitoring PTS in environmental applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信