Mariano De Leo , Juan Pablo Borgna , Cristian Huenchul
{"title":"Non trivial solutions for a system of coupled Ginzburg-Landau equations","authors":"Mariano De Leo , Juan Pablo Borgna , Cristian Huenchul","doi":"10.1016/j.apnum.2024.10.010","DOIUrl":null,"url":null,"abstract":"<div><div>This article addresses both the existence and properties of non-trivial solutions for a system of coupled Ginzburg-Landau equations derived from nematic-superconducting models. Its main goal is to provide a thorough numerical description of the region in the parameter space containing solutions that behave as a mixed (non trivial) nematic-superconducting state along with a rigorous proof for the existence of this region. More precisely, the rigorous approach establishes that the parameter space is divided into two regions with qualitatively different properties, according to the magnitude of the coupling constant: for small values (weak coupling), there is a unique non-trivial solution, and for large values (strong coupling), only trivial solutions exist. In addition, using a shooting method-based numerical approach, the profiles for the nematic and superconducting components of the non trivial solution are given, together with an algorithm computing the transition values representing the boundaries for the weak coupling region: from superconducting to mixed, and from mixed to nematic. Finally, numerical evidence is given for the existence of a third region, related to neither a small nor a strong coupling parameter (medium coupling) for which multiple non trivial solutions exist.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 271-289"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002770","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This article addresses both the existence and properties of non-trivial solutions for a system of coupled Ginzburg-Landau equations derived from nematic-superconducting models. Its main goal is to provide a thorough numerical description of the region in the parameter space containing solutions that behave as a mixed (non trivial) nematic-superconducting state along with a rigorous proof for the existence of this region. More precisely, the rigorous approach establishes that the parameter space is divided into two regions with qualitatively different properties, according to the magnitude of the coupling constant: for small values (weak coupling), there is a unique non-trivial solution, and for large values (strong coupling), only trivial solutions exist. In addition, using a shooting method-based numerical approach, the profiles for the nematic and superconducting components of the non trivial solution are given, together with an algorithm computing the transition values representing the boundaries for the weak coupling region: from superconducting to mixed, and from mixed to nematic. Finally, numerical evidence is given for the existence of a third region, related to neither a small nor a strong coupling parameter (medium coupling) for which multiple non trivial solutions exist.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.