Laser-induced texturing: A sustainable approach to self-cleaning mechanisms in solar panel

IF 5.3 Q2 ENGINEERING, ENVIRONMENTAL
Rahool Rai , Mahadzir Ishak , Aiman Bin Mohd Halil , M.M. Quazi , Sudhakar Kumarasamy
{"title":"Laser-induced texturing: A sustainable approach to self-cleaning mechanisms in solar panel","authors":"Rahool Rai ,&nbsp;Mahadzir Ishak ,&nbsp;Aiman Bin Mohd Halil ,&nbsp;M.M. Quazi ,&nbsp;Sudhakar Kumarasamy","doi":"10.1016/j.clet.2024.100866","DOIUrl":null,"url":null,"abstract":"<div><div>This review paper discusses the application of laser surface texturing as a novel approach for inducing self-cleaning properties in solar panels, with a particular focus on glass surfaces. Despite the limitation in literature on this specific topic, this study integrates available information to provide a comprehensive overview. Apparently, the challenges posed by sunlight reflection and dust accumulation on photovoltaic panels are addressed through the application of anti-reflective and self-cleaning coatings. But coatings consists of hazardous chemicals such as: TiO<sub>2</sub>, SiO<sub>2</sub>, ZnO, Si<sub>3</sub>N<sub>4</sub>,MgF<sub>2</sub> and ZrO<sub>2</sub>. Therefore, the focus here shifts towards the modern use of laser technology for surface modification. The literature shows involvement of optimization of laser processing parameters, including laser power, scanning speed, repetition rate and their interdependent relation, to achieve super-hydrophobic surfaces. Therefore, emphasis on the significance of understanding the effects of laser parameters on the resulting surface characteristics, such as water contact angle, self-cleaning efficiency, and opacity of the glass is discussed. Several studies conducted for metals show the effectiveness of laser-textured surfaces in mitigating dust accumulation. The discussion also touches upon the challenges and advantages of laser-based texturing, due to cost-effectiveness, precision, and speed. Specifically addressing laser surface texturing for solar self-cleaning applications. This research gathers current information to highlight the remarkable potential of laser technology in improving the performance and longevity of solar panels by instilling self-cleaning properties.</div></div>","PeriodicalId":34618,"journal":{"name":"Cleaner Engineering and Technology","volume":"24 ","pages":"Article 100866"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666790824001460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper discusses the application of laser surface texturing as a novel approach for inducing self-cleaning properties in solar panels, with a particular focus on glass surfaces. Despite the limitation in literature on this specific topic, this study integrates available information to provide a comprehensive overview. Apparently, the challenges posed by sunlight reflection and dust accumulation on photovoltaic panels are addressed through the application of anti-reflective and self-cleaning coatings. But coatings consists of hazardous chemicals such as: TiO2, SiO2, ZnO, Si3N4,MgF2 and ZrO2. Therefore, the focus here shifts towards the modern use of laser technology for surface modification. The literature shows involvement of optimization of laser processing parameters, including laser power, scanning speed, repetition rate and their interdependent relation, to achieve super-hydrophobic surfaces. Therefore, emphasis on the significance of understanding the effects of laser parameters on the resulting surface characteristics, such as water contact angle, self-cleaning efficiency, and opacity of the glass is discussed. Several studies conducted for metals show the effectiveness of laser-textured surfaces in mitigating dust accumulation. The discussion also touches upon the challenges and advantages of laser-based texturing, due to cost-effectiveness, precision, and speed. Specifically addressing laser surface texturing for solar self-cleaning applications. This research gathers current information to highlight the remarkable potential of laser technology in improving the performance and longevity of solar panels by instilling self-cleaning properties.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cleaner Engineering and Technology
Cleaner Engineering and Technology Engineering-Engineering (miscellaneous)
CiteScore
9.80
自引率
0.00%
发文量
218
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信