Detection, Chemical Analysis and Pharmacological Characterization of Dipyanone and other New Synthetic Opioids Related to Prescription Drugs

M.M. Vandeputte, S.E. Walton, S.A. Shuda, A.J. Krotulski, C.P. Stove
{"title":"Detection, Chemical Analysis and Pharmacological Characterization of Dipyanone and other New Synthetic Opioids Related to Prescription Drugs","authors":"M.M. Vandeputte,&nbsp;S.E. Walton,&nbsp;S.A. Shuda,&nbsp;A.J. Krotulski,&nbsp;C.P. Stove","doi":"10.1016/j.etdah.2023.100130","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><div>New synthetic opioids (NSOs) continue to emerge on recreational drug markets. We performed in vitro pharmacological characterization of dipyanone, desmethylmoramide and acetoxymethylketobemidone (O-AMKD) – recent NSOs that are structurally related to the prescription opioids methadone and ketobemidone. Dipyanone was also detected for the first time in a seized powder and quantified in a postmortem toxicology case.</div></div><div><h3>Methods</h3><div>In the applied cell-based assay, activation of human MOR, fused to one subunit of a nanoluciferase, leads to recruitment of βarr2, fused to the complementing subunit. The resulting functional complementation enables restoration of luciferase activity (NanoBiT®, Promega). Quantification of dipyanone in blood was done via liquid chromatography tandem quadrupole mass spectrometry using standard addition.</div></div><div><h3>Results</h3><div>Dipyanone (EC50=39.9 nM; Emax=155% vs. hydromorphone) is about equally active as methadone (EC50=50.3 nM; Emax=152%), whereas desmethylmoramide (EC50=1335 nM; Emax=126%) is considerably less active. A close structural analogue of ketobemidone (EC50=134 nM; Emax=156%), O-AMKD showed a lower potency (EC50=1262 nM) and efficacy (Emax=109%). Furthermore, dipyanone was quantified in blood (370 ng/mL) and detected alongside other NSOs and novel benzodiazepines.</div></div><div><h3>Conclusions</h3><div>The uncontrolled availability and unsupervised use of NSOs are reasons for concern. Careful monitoring is required to detect other NSOs related to prescription opioids that may emerge on recreational drug markets.</div></div>","PeriodicalId":72899,"journal":{"name":"Emerging trends in drugs, addictions, and health","volume":"4 ","pages":"Article 100130"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging trends in drugs, addictions, and health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667118223000818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

New synthetic opioids (NSOs) continue to emerge on recreational drug markets. We performed in vitro pharmacological characterization of dipyanone, desmethylmoramide and acetoxymethylketobemidone (O-AMKD) – recent NSOs that are structurally related to the prescription opioids methadone and ketobemidone. Dipyanone was also detected for the first time in a seized powder and quantified in a postmortem toxicology case.

Methods

In the applied cell-based assay, activation of human MOR, fused to one subunit of a nanoluciferase, leads to recruitment of βarr2, fused to the complementing subunit. The resulting functional complementation enables restoration of luciferase activity (NanoBiT®, Promega). Quantification of dipyanone in blood was done via liquid chromatography tandem quadrupole mass spectrometry using standard addition.

Results

Dipyanone (EC50=39.9 nM; Emax=155% vs. hydromorphone) is about equally active as methadone (EC50=50.3 nM; Emax=152%), whereas desmethylmoramide (EC50=1335 nM; Emax=126%) is considerably less active. A close structural analogue of ketobemidone (EC50=134 nM; Emax=156%), O-AMKD showed a lower potency (EC50=1262 nM) and efficacy (Emax=109%). Furthermore, dipyanone was quantified in blood (370 ng/mL) and detected alongside other NSOs and novel benzodiazepines.

Conclusions

The uncontrolled availability and unsupervised use of NSOs are reasons for concern. Careful monitoring is required to detect other NSOs related to prescription opioids that may emerge on recreational drug markets.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Emerging trends in drugs, addictions, and health
Emerging trends in drugs, addictions, and health Pharmacology, Psychiatry and Mental Health, Forensic Medicine, Drug Discovery, Pharmacology, Toxicology and Pharmaceutics (General)
CiteScore
2.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信