Characterization of oxidative processes associated to low-severity tire tread wear

IF 5.3 1区 工程技术 Q1 ENGINEERING, MECHANICAL
Wear Pub Date : 2025-01-24 DOI:10.1016/j.wear.2025.205753
C. Chanal , J. Galipaud , B. Moreaux , J.-L. Loubet , P. Sotta
{"title":"Characterization of oxidative processes associated to low-severity tire tread wear","authors":"C. Chanal ,&nbsp;J. Galipaud ,&nbsp;B. Moreaux ,&nbsp;J.-L. Loubet ,&nbsp;P. Sotta","doi":"10.1016/j.wear.2025.205753","DOIUrl":null,"url":null,"abstract":"<div><div>As the tire tread wears throughout its lifetime, particles are generated due to small-scale fracture processes. Friction and wear may also involve physico-chemical degradation of the material. In this paper, the chemical effects associated to low-severity wear of filled Styrene Butadiene Rubber (SBR)/cis-Butadiene Rubber (BR) materials were investigated. Laboratory wear tests were performed using a home-made rotary tribometer in which intermittent sliding contacts on a slightly rough granite surface are applied. This enables imitating real conditions in terms of kinematics and dynamics of the contact for tire treads. The resulting wear patterns were analyzed through X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The results show that sulfur oxidation occurs concomitantly to wear. Besides, thermal measurements reveal no significant temperature increase at the sample surface during the wear tests. This suggests that the observed chemical changes are not thermally activated but are instead due to mechanical phenomena related to interface shear. Analysis of the wear debris indicates that their chemical composition is consistent with that of the wear patterns.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"566 ","pages":"Article 205753"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043164825000225","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

As the tire tread wears throughout its lifetime, particles are generated due to small-scale fracture processes. Friction and wear may also involve physico-chemical degradation of the material. In this paper, the chemical effects associated to low-severity wear of filled Styrene Butadiene Rubber (SBR)/cis-Butadiene Rubber (BR) materials were investigated. Laboratory wear tests were performed using a home-made rotary tribometer in which intermittent sliding contacts on a slightly rough granite surface are applied. This enables imitating real conditions in terms of kinematics and dynamics of the contact for tire treads. The resulting wear patterns were analyzed through X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). The results show that sulfur oxidation occurs concomitantly to wear. Besides, thermal measurements reveal no significant temperature increase at the sample surface during the wear tests. This suggests that the observed chemical changes are not thermally activated but are instead due to mechanical phenomena related to interface shear. Analysis of the wear debris indicates that their chemical composition is consistent with that of the wear patterns.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wear
Wear 工程技术-材料科学:综合
CiteScore
8.80
自引率
8.00%
发文量
280
审稿时长
47 days
期刊介绍: Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信