Ocean acidification signals through deep time: A review of proxies

Subham Patra, Jahnavi Punekar
{"title":"Ocean acidification signals through deep time: A review of proxies","authors":"Subham Patra,&nbsp;Jahnavi Punekar","doi":"10.1016/j.eve.2024.100056","DOIUrl":null,"url":null,"abstract":"<div><div>Anthropogenic CO₂ levels have increased by nearly 40% from preindustrial levels, with about 30% absorbed by the ocean leading to ocean acidification (OA). The associated carbonate undersaturation can critically affect marine calcifying communities. Major disruptions in the marine carbonate cycling are common throughout the Phanerozoic stratigraphic record, and often coincide with major mass extinctions and faunal turnover events. The anthropogenic OA is progressing at a rate nearly ten times faster than similar events of the past 300 million years. This makes OA research of high priority, and entails a rigorous evaluation of OA events from deep time for perspective. Such efforts are contingent upon reliable proxies. This review compiles geochemical and foraminifera-based proxies, offering a critical assessment of their fidelity, ease of use, and application scope.</div><div>This study evaluates the scope and utility of documented observational and analytical proxies based on factors like the nature of data, and the time, effort and advanced analytical facilities involved. Foraminifera-based observational proxies like morphological and community responses to OA are effective but demand taxonomic expertise. They are further complicated by vital effects, metabolic trade-offs, the influence of stressors other than ocean acidification, and paleogeographic variability in both the magnitude of stress and the organisms' response to it. Well-calibrated analytical (geochemical) proxies offer the potential for rapid, high-resolution records across various sites. All proxies face challenges from diagenetic alterations, which can affect their reliability. However, this review offers the pros/cons and practical recommendations for proxy utility, emphasing the need for a multi-proxy approach to enhance accuracy and cross-verification. Future research must urgently address plankton community responses, OA-tolerant taxa, and localized calcification environments to grasp the full impact of acidification. It is critical to refine lesser-known proxies (e.g., S/Ca) and to rapidly expand datasets on carbonate system parameters across Phanerozoic OA events to advance our understanding and mitigation strategies.</div></div>","PeriodicalId":100516,"journal":{"name":"Evolving Earth","volume":"3 ","pages":"Article 100056"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolving Earth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950117224000268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic CO₂ levels have increased by nearly 40% from preindustrial levels, with about 30% absorbed by the ocean leading to ocean acidification (OA). The associated carbonate undersaturation can critically affect marine calcifying communities. Major disruptions in the marine carbonate cycling are common throughout the Phanerozoic stratigraphic record, and often coincide with major mass extinctions and faunal turnover events. The anthropogenic OA is progressing at a rate nearly ten times faster than similar events of the past 300 million years. This makes OA research of high priority, and entails a rigorous evaluation of OA events from deep time for perspective. Such efforts are contingent upon reliable proxies. This review compiles geochemical and foraminifera-based proxies, offering a critical assessment of their fidelity, ease of use, and application scope.
This study evaluates the scope and utility of documented observational and analytical proxies based on factors like the nature of data, and the time, effort and advanced analytical facilities involved. Foraminifera-based observational proxies like morphological and community responses to OA are effective but demand taxonomic expertise. They are further complicated by vital effects, metabolic trade-offs, the influence of stressors other than ocean acidification, and paleogeographic variability in both the magnitude of stress and the organisms' response to it. Well-calibrated analytical (geochemical) proxies offer the potential for rapid, high-resolution records across various sites. All proxies face challenges from diagenetic alterations, which can affect their reliability. However, this review offers the pros/cons and practical recommendations for proxy utility, emphasing the need for a multi-proxy approach to enhance accuracy and cross-verification. Future research must urgently address plankton community responses, OA-tolerant taxa, and localized calcification environments to grasp the full impact of acidification. It is critical to refine lesser-known proxies (e.g., S/Ca) and to rapidly expand datasets on carbonate system parameters across Phanerozoic OA events to advance our understanding and mitigation strategies.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信