Deep one-class probability learning for end-to-end image classification

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jia Liu, Wenhua Zhang, Fang Liu, Jingxiang Yang, Liang Xiao
{"title":"Deep one-class probability learning for end-to-end image classification","authors":"Jia Liu,&nbsp;Wenhua Zhang,&nbsp;Fang Liu,&nbsp;Jingxiang Yang,&nbsp;Liang Xiao","doi":"10.1016/j.neunet.2025.107201","DOIUrl":null,"url":null,"abstract":"<div><div>One-class learning has many application potentials in novelty, anomaly, and outlier detection systems. It aims to distinguish both positive and negative samples with a model trained via only positive samples or one-class annotated samples. With the difficulty in training an end-to-end classification network, existing methods usually make decisions indirectly. To fully exploit the learning capability of a deep network, in this paper, we propose to design a deep end-to-end binary image classifier based on convolutional neural network with input of image and output of classification result. Without negative training samples, we establish a probabilistic model driven by an energy to learn the distribution of positive samples. The energy is proposed based on the output of the network which subtly models the deep discriminations into statistics. During optimization, to overcome the difficulty of distribution estimation, we propose a novel particle swarm optimization algorithm based sampling method. Compared with existing methods, the proposed method is able to directly output classification results without additional thresholding or estimating operations. Moreover, the deep network is directly optimized via the probabilistic model which results in better adaptation of positive distribution and classification task. Experiments demonstrate the effectiveness and state-of-the-art performance of the proposed method.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107201"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000802","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

One-class learning has many application potentials in novelty, anomaly, and outlier detection systems. It aims to distinguish both positive and negative samples with a model trained via only positive samples or one-class annotated samples. With the difficulty in training an end-to-end classification network, existing methods usually make decisions indirectly. To fully exploit the learning capability of a deep network, in this paper, we propose to design a deep end-to-end binary image classifier based on convolutional neural network with input of image and output of classification result. Without negative training samples, we establish a probabilistic model driven by an energy to learn the distribution of positive samples. The energy is proposed based on the output of the network which subtly models the deep discriminations into statistics. During optimization, to overcome the difficulty of distribution estimation, we propose a novel particle swarm optimization algorithm based sampling method. Compared with existing methods, the proposed method is able to directly output classification results without additional thresholding or estimating operations. Moreover, the deep network is directly optimized via the probabilistic model which results in better adaptation of positive distribution and classification task. Experiments demonstrate the effectiveness and state-of-the-art performance of the proposed method.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信