Switching between supercritical and subcritical turbulent transitions in inner cylinder rotating Taylor–Couette–Poiseuille flow

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Yuki Matsukawa, Takahiro Tsukahara
{"title":"Switching between supercritical and subcritical turbulent transitions in inner cylinder rotating Taylor–Couette–Poiseuille flow","authors":"Yuki Matsukawa,&nbsp;Takahiro Tsukahara","doi":"10.1016/j.ijheatfluidflow.2024.109667","DOIUrl":null,"url":null,"abstract":"<div><div>The Taylor–Couette flow between a stationary outer cylinder and rotating inner cylinder undergoes a supercritical transition. After becoming linearly unstable, the flow becomes progressively more complex: as the inner cylinder rotation Reynolds number <span><math><msub><mrow><mi>Re</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span> increases, the flow state changes to the Taylor vortex flow (TVF) <span><math><mo>→</mo></math></span> wavy Taylor vortex flow (WVF) <span><math><mo>→</mo></math></span> modulated wavy Taylor vortex flow (MWV). In contrast, annular Poiseuille flow, driven by an axial pressure gradient in concentric cylinders, undergoes a subcritical transition. Its subcritical turbulent flow features helical-shaped localized turbulence (HLT). The Taylor–Couette–Poiseuille flow, which is a combined shear flow of cylinder-rotation-driven flow and axial pressure-driven flow, is the subject of this study. We investigated the flow state transition processes for a high radius ratio of 0.883 at three different <span><math><msub><mrow><mi>Re</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span> values, using direct numerical simulations. We demonstrated that in the TVF and WVF-based cases, the pressure-driven axial flow stabilized into the Taylor-vortex-free flow field, with the WVF state transitioning to the TVF state before laminarization. A further increase in the axial pressure gradient led to intermittent turbulence, similar to HLT. These facts indicate that the switch from supercritical to subcritical transitions occurs across laminarization. In the MWV-based case, at a higher <span><math><msub><mrow><mi>Re</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span>, the flow does not exhibit laminarization but becomes fully turbulent, unlike in the lower <span><math><msub><mrow><mi>Re</mi></mrow><mrow><mi>in</mi></mrow></msub></math></span> cases. However, the waviness of the Taylor vortex disappeared, and the pre-multiplied energy spectra confirmed partial stabilization before the transition to turbulence. From the perspective of Lumley’s anisotropic invariant map, the TVF- and WVF-based cases have one- or two-component anisotropy under all conditions. However, the MWV-based case becomes continuously similar to the anisotropic map of typical turbulent channel flow as <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></mrow></math></span> increases.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109667"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24003928","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Taylor–Couette flow between a stationary outer cylinder and rotating inner cylinder undergoes a supercritical transition. After becoming linearly unstable, the flow becomes progressively more complex: as the inner cylinder rotation Reynolds number Rein increases, the flow state changes to the Taylor vortex flow (TVF) wavy Taylor vortex flow (WVF) modulated wavy Taylor vortex flow (MWV). In contrast, annular Poiseuille flow, driven by an axial pressure gradient in concentric cylinders, undergoes a subcritical transition. Its subcritical turbulent flow features helical-shaped localized turbulence (HLT). The Taylor–Couette–Poiseuille flow, which is a combined shear flow of cylinder-rotation-driven flow and axial pressure-driven flow, is the subject of this study. We investigated the flow state transition processes for a high radius ratio of 0.883 at three different Rein values, using direct numerical simulations. We demonstrated that in the TVF and WVF-based cases, the pressure-driven axial flow stabilized into the Taylor-vortex-free flow field, with the WVF state transitioning to the TVF state before laminarization. A further increase in the axial pressure gradient led to intermittent turbulence, similar to HLT. These facts indicate that the switch from supercritical to subcritical transitions occurs across laminarization. In the MWV-based case, at a higher Rein, the flow does not exhibit laminarization but becomes fully turbulent, unlike in the lower Rein cases. However, the waviness of the Taylor vortex disappeared, and the pre-multiplied energy spectra confirmed partial stabilization before the transition to turbulence. From the perspective of Lumley’s anisotropic invariant map, the TVF- and WVF-based cases have one- or two-component anisotropy under all conditions. However, the MWV-based case becomes continuously similar to the anisotropic map of typical turbulent channel flow as F(P) increases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信