Study on the smoke sealing efficiency of air curtain and maximum ceiling temperature rise under longitudinal ventilation in bifurcated tunnel

IF 2.6 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Tao Li , Zhengquan Chen , Wenxuan Zhao , Jianing Yuan , Chunxiang Wang , Yuchun Zhang
{"title":"Study on the smoke sealing efficiency of air curtain and maximum ceiling temperature rise under longitudinal ventilation in bifurcated tunnel","authors":"Tao Li ,&nbsp;Zhengquan Chen ,&nbsp;Wenxuan Zhao ,&nbsp;Jianing Yuan ,&nbsp;Chunxiang Wang ,&nbsp;Yuchun Zhang","doi":"10.1016/j.ijheatfluidflow.2024.109711","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the ever-growing development and construction of municipalities, the underground tunnel structures raises the probability of traffic accidents and the fire risks. The effects of different longitudinal ventilation velocities and air curtain spouting angles (ASA) on the temperature distribution and maximum ceiling temperature rise in a scaled bifurcated tunnel were investigated experimentally and numerically with different heat release rates. Induced by synergistic effect of longitudinal ventilation and air curtain, the maximum ceiling temperature in the fire zone was shifted. The high temperature ranges of ceiling expanded as ASA increased. The smoke sealing effect (SSE) of different ASA ranged from 0.6 to 0.82, and the 15 ° showed a more stable SSE. Besides, based on the Li model, the factor <span><math><mi>θ</mi></math></span> of ASA was introduced for predicting the maximum ceiling temperature rise, which is consistent with the experimental data. Comparison between the experiments and the simulations showed good agreement.</div></div>","PeriodicalId":335,"journal":{"name":"International Journal of Heat and Fluid Flow","volume":"112 ","pages":"Article 109711"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142727X24004363","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the ever-growing development and construction of municipalities, the underground tunnel structures raises the probability of traffic accidents and the fire risks. The effects of different longitudinal ventilation velocities and air curtain spouting angles (ASA) on the temperature distribution and maximum ceiling temperature rise in a scaled bifurcated tunnel were investigated experimentally and numerically with different heat release rates. Induced by synergistic effect of longitudinal ventilation and air curtain, the maximum ceiling temperature in the fire zone was shifted. The high temperature ranges of ceiling expanded as ASA increased. The smoke sealing effect (SSE) of different ASA ranged from 0.6 to 0.82, and the 15 ° showed a more stable SSE. Besides, based on the Li model, the factor θ of ASA was introduced for predicting the maximum ceiling temperature rise, which is consistent with the experimental data. Comparison between the experiments and the simulations showed good agreement.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Heat and Fluid Flow
International Journal of Heat and Fluid Flow 工程技术-工程:机械
CiteScore
5.00
自引率
7.70%
发文量
131
审稿时长
33 days
期刊介绍: The International Journal of Heat and Fluid Flow welcomes high-quality original contributions on experimental, computational, and physical aspects of convective heat transfer and fluid dynamics relevant to engineering or the environment, including multiphase and microscale flows. Papers reporting the application of these disciplines to design and development, with emphasis on new technological fields, are also welcomed. Some of these new fields include microscale electronic and mechanical systems; medical and biological systems; and thermal and flow control in both the internal and external environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信