{"title":"Feeding control and water quality monitoring on bioenergetic fish growth modeling: Opportunities and challenges","authors":"Fahad Aljehani , Ibrahima N’Doye , Taous-Meriem Laleg-Kirati","doi":"10.1016/j.aquaeng.2024.102511","DOIUrl":null,"url":null,"abstract":"<div><div>Aquaculture systems can benefit from the recent development of advanced control strategies to reduce operating costs and fish loss and increase growth production efficiency, resulting in fish welfare and health. Monitoring the water quality and controlling feeding are fundamental elements of balancing fish productivity and shaping the fish growth process. Currently, most fish-feeding processes are conducted manually in different phases and rely on time-consuming and challenging artificial discrimination. The feeding control approach influences fish growth and breeding through the feed conversion rate; hence, controlling these feeding parameters is crucial for enhancing fish welfare and minimizing general aquaculture costs. In addition to feeding, several important environmental factors, such as temperature, dissolved oxygen, and ammonia, also affect fish health and production. Therefore, there is a critical need to develop control strategies to determine optimal, efficient, and reliable feeding processes and monitor water quality. This paper reviews the main control design techniques for fish growth in aquaculture systems, namely algorithms that optimize the feeding and water quality of a dynamic fish growth process. Specifically, we review model-based control approaches and model-free reinforcement learning strategies to optimize the growth and survival of the fish or track a desired reference live-weight growth trajectory. The model-free framework uses an approximate fish growth dynamic model and does not satisfy constraints. We discuss how model-based approaches can support a reinforcement learning framework to efficiently handle constraint satisfaction and find better trajectories and policies from value-based reinforcement learning.</div></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"109 ","pages":"Article 102511"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860924001225","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Aquaculture systems can benefit from the recent development of advanced control strategies to reduce operating costs and fish loss and increase growth production efficiency, resulting in fish welfare and health. Monitoring the water quality and controlling feeding are fundamental elements of balancing fish productivity and shaping the fish growth process. Currently, most fish-feeding processes are conducted manually in different phases and rely on time-consuming and challenging artificial discrimination. The feeding control approach influences fish growth and breeding through the feed conversion rate; hence, controlling these feeding parameters is crucial for enhancing fish welfare and minimizing general aquaculture costs. In addition to feeding, several important environmental factors, such as temperature, dissolved oxygen, and ammonia, also affect fish health and production. Therefore, there is a critical need to develop control strategies to determine optimal, efficient, and reliable feeding processes and monitor water quality. This paper reviews the main control design techniques for fish growth in aquaculture systems, namely algorithms that optimize the feeding and water quality of a dynamic fish growth process. Specifically, we review model-based control approaches and model-free reinforcement learning strategies to optimize the growth and survival of the fish or track a desired reference live-weight growth trajectory. The model-free framework uses an approximate fish growth dynamic model and does not satisfy constraints. We discuss how model-based approaches can support a reinforcement learning framework to efficiently handle constraint satisfaction and find better trajectories and policies from value-based reinforcement learning.
期刊介绍:
Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations.
Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas:
– Engineering and design of aquaculture facilities
– Engineering-based research studies
– Construction experience and techniques
– In-service experience, commissioning, operation
– Materials selection and their uses
– Quantification of biological data and constraints