{"title":"On the functions which are CCZ-equivalent but not EA-equivalent to quadratic functions over Fpn","authors":"Jaeseong Jeong , Namhun Koo , Soonhak Kwon","doi":"10.1016/j.ffa.2025.102574","DOIUrl":null,"url":null,"abstract":"<div><div>For a given function <em>F</em> from <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to <em>F</em> is a very important and interesting problem. For example, Kölsch <span><span>[33]</span></span> showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>i</mi></mrow></msup><mo>+</mo><mn>1</mn></mrow></msup></math></span> and <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mrow><mi>Tr</mi></mrow><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>9</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span>, Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) <span><span>[12]</span></span>, <span><span>[14]</span></span> found functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. In this paper, when a given function <em>F</em> has a component function which has a linear structure, we present functions which are CCZ-equivalent to <em>F</em>, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to <em>F</em>. As a consequence, for every quadratic function <em>F</em> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> (<span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>) with nonlinearity greater than 0 and differential uniformity not exceeding <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span>, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. Also for every non-planar quadratic function on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> <span><math><mo>(</mo><mi>p</mi><mo>></mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>≥</mo><mn>4</mn><mo>)</mo></math></span> with <span><math><mo>|</mo><msub><mrow><mi>W</mi></mrow><mrow><mi>F</mi></mrow></msub><mo>|</mo><mo>≤</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></math></span> and differential uniformity not exceeding <span><math><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>3</mn></mrow></msup></math></span>, we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to <em>F</em>. As an application, for a proper divisor <em>m</em> of <em>n</em>, we present many examples of <span><math><mo>(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span>-functions <em>F</em> on <span><math><msub><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msub></math></span> such that the CCZ-equivalence class of <em>F</em> is strictly larger than the EA-equivalence class of <em>F</em>.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"103 ","pages":"Article 102574"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725000048","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a given function F from to itself, determining whether there exists a function which is CCZ-equivalent but EA-inequivalent to F is a very important and interesting problem. For example, Kölsch [33] showed that there is no function which is CCZ-equivalent but EA-inequivalent to the inverse function. On the other hand, for the cases of Gold function and over , Budaghyan, Carlet and Pott (respectively, Budaghyan, Carlet and Leander) [12], [14] found functions which are CCZ-equivalent but EA-inequivalent to F. In this paper, when a given function F has a component function which has a linear structure, we present functions which are CCZ-equivalent to F, and if suitable conditions are satisfied, the constructed functions are shown to be EA-inequivalent to F. As a consequence, for every quadratic function F on () with nonlinearity greater than 0 and differential uniformity not exceeding , we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to F. Also for every non-planar quadratic function on with and differential uniformity not exceeding , we explicitly construct functions which are CCZ-equivalent but EA-inequivalent to F. As an application, for a proper divisor m of n, we present many examples of -functions F on such that the CCZ-equivalence class of F is strictly larger than the EA-equivalence class of F.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.