Systematic promoter engineering in Lactobacillus casei: Construction and screening of a synthetic aldolase promoter library for enhanced gene expression
Jun Young Choi , Jaepyeong Jang , Young-Chul Park , Pyung Cheon Lee
{"title":"Systematic promoter engineering in Lactobacillus casei: Construction and screening of a synthetic aldolase promoter library for enhanced gene expression","authors":"Jun Young Choi , Jaepyeong Jang , Young-Chul Park , Pyung Cheon Lee","doi":"10.1016/j.procbio.2024.11.033","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we engineered a synthetic promoter library for <em>Lactobacillus casei</em> BL23 by randomizing the −35, −10 regions, and spacer sequences of the aldolase promoter. The goal was to generate promoters with varying strengths for use in metabolic engineering applications. Using computational tools (SAPPHIRE and BacPP), we identified core promoter elements and systematically randomized these regions to create 31 variants. Fluorescence-activated cell sorting (FACS) allowed for the isolation of weak, moderate, and strong promoters based on superfolder GFP (sfGFP) expression levels. The strongest promoter exhibited an 8.71-fold increase in sfGFP expression compared to the native aldolase promoter. Sequence analysis revealed specific nucleotide preferences in the core elements, which influenced promoter strength. This study offers a valuable platform for fine-tuning gene expression in <em>L. casei</em>, providing insights for future metabolic engineering applications.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"149 ","pages":"Pages 45-53"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359511324003945","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we engineered a synthetic promoter library for Lactobacillus casei BL23 by randomizing the −35, −10 regions, and spacer sequences of the aldolase promoter. The goal was to generate promoters with varying strengths for use in metabolic engineering applications. Using computational tools (SAPPHIRE and BacPP), we identified core promoter elements and systematically randomized these regions to create 31 variants. Fluorescence-activated cell sorting (FACS) allowed for the isolation of weak, moderate, and strong promoters based on superfolder GFP (sfGFP) expression levels. The strongest promoter exhibited an 8.71-fold increase in sfGFP expression compared to the native aldolase promoter. Sequence analysis revealed specific nucleotide preferences in the core elements, which influenced promoter strength. This study offers a valuable platform for fine-tuning gene expression in L. casei, providing insights for future metabolic engineering applications.
期刊介绍:
Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.