State-space modelling for infectious disease surveillance data: Dynamic regression and covariance analysis

IF 8.8 3区 医学 Q1 Medicine
Christopher D. Prashad
{"title":"State-space modelling for infectious disease surveillance data: Dynamic regression and covariance analysis","authors":"Christopher D. Prashad","doi":"10.1016/j.idm.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze COVID-19 surveillance data from Ontario, Canada, using state-space modelling techniques to address key challenges in understanding disease transmission dynamics. The study applies component linear Gaussian state-space models to capture periodicity, trends, and random fluctuations in case counts. We explore the relationships between COVID-19 cases, hospitalizations, workdays, and wastewater viral loads through dynamic regression models, offering insights into how these factors influence public health outcomes. Our analysis extends to multivariate covariance estimation, utilizing a novel methodology to provide time-varying correlation estimates that account for non-stationary data. Results demonstrate the significance of incorporating environmental covariates, such as wastewater data, in improving model robustness and uncovering the complex interplay between epidemiological factors. This work highlights the limitations of simpler models and emphasizes the advantages of state-space approaches for analyzing dynamic infectious disease data. By illustrating the application of advanced modelling techniques, this study contributes to a deeper understanding of disease transmission and informs public health interventions.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 2","pages":"Pages 591-627"},"PeriodicalIF":8.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042724001313","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze COVID-19 surveillance data from Ontario, Canada, using state-space modelling techniques to address key challenges in understanding disease transmission dynamics. The study applies component linear Gaussian state-space models to capture periodicity, trends, and random fluctuations in case counts. We explore the relationships between COVID-19 cases, hospitalizations, workdays, and wastewater viral loads through dynamic regression models, offering insights into how these factors influence public health outcomes. Our analysis extends to multivariate covariance estimation, utilizing a novel methodology to provide time-varying correlation estimates that account for non-stationary data. Results demonstrate the significance of incorporating environmental covariates, such as wastewater data, in improving model robustness and uncovering the complex interplay between epidemiological factors. This work highlights the limitations of simpler models and emphasizes the advantages of state-space approaches for analyzing dynamic infectious disease data. By illustrating the application of advanced modelling techniques, this study contributes to a deeper understanding of disease transmission and informs public health interventions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Infectious Disease Modelling
Infectious Disease Modelling Mathematics-Applied Mathematics
CiteScore
17.00
自引率
3.40%
发文量
73
审稿时长
17 weeks
期刊介绍: Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信