Advancing an LDA-GMM-CorEx topic model with prior domain knowledge in information systems research

IF 8.2 2区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yuting Jiang , Mengyao Fu , Jie Fang , Matti Rossi , Yuting Wang , Chee-Wee Tan
{"title":"Advancing an LDA-GMM-CorEx topic model with prior domain knowledge in information systems research","authors":"Yuting Jiang ,&nbsp;Mengyao Fu ,&nbsp;Jie Fang ,&nbsp;Matti Rossi ,&nbsp;Yuting Wang ,&nbsp;Chee-Wee Tan","doi":"10.1016/j.im.2024.104097","DOIUrl":null,"url":null,"abstract":"<div><div>Embedding topic models with domain knowledge is deemed to be effective in bolstering the models’ interpretability. Nevertheless, contemporary topic modeling techniques introduced in past studies lack consideration for circumstances in which prior domain knowledge either does not exist or becomes obsolete quickly. Combining the latent Dirichlet allocation (LDA) with the Gaussian mixture model (GMM) and the anchor correlation explanation (CorEx) topic model, we advanced a novel LDA-GMM-CorEx topic modeling approach to enhance the domain knowledge model's adaptability and improve the interpretability of topic modeling. We further verified the effectiveness of our proposed topic modeling approach on two separate datasets from different domains, thereby attesting to its general applicability.</div></div>","PeriodicalId":56291,"journal":{"name":"Information & Management","volume":"62 2","pages":"Article 104097"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information & Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378720624001794","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Embedding topic models with domain knowledge is deemed to be effective in bolstering the models’ interpretability. Nevertheless, contemporary topic modeling techniques introduced in past studies lack consideration for circumstances in which prior domain knowledge either does not exist or becomes obsolete quickly. Combining the latent Dirichlet allocation (LDA) with the Gaussian mixture model (GMM) and the anchor correlation explanation (CorEx) topic model, we advanced a novel LDA-GMM-CorEx topic modeling approach to enhance the domain knowledge model's adaptability and improve the interpretability of topic modeling. We further verified the effectiveness of our proposed topic modeling approach on two separate datasets from different domains, thereby attesting to its general applicability.
基于先验领域知识的LDA-GMM-CorEx主题模型的研究
在主题模型中嵌入领域知识可以有效地提高模型的可解释性。然而,在过去的研究中引入的当代主题建模技术缺乏对先验领域知识不存在或迅速过时的情况的考虑。将潜在狄利克雷分配(LDA)与高斯混合模型(GMM)和锚点相关解释(CorEx)主题模型相结合,提出了一种新的LDA-GMM-CorEx主题建模方法,增强了领域知识模型的适应性,提高了主题建模的可解释性。我们进一步验证了我们提出的主题建模方法在来自不同领域的两个独立数据集上的有效性,从而证明了它的一般适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information & Management
Information & Management 工程技术-计算机:信息系统
CiteScore
17.90
自引率
6.10%
发文量
123
审稿时长
1 months
期刊介绍: Information & Management is a publication that caters to researchers in the field of information systems as well as managers, professionals, administrators, and senior executives involved in designing, implementing, and managing Information Systems Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信