Enhancing thermostability of lysine hydroxylase via a semi-rational design

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Chengjuan Hu , Zhijie Zheng , Yue Zhang , Feifei Chen , Alei Zhang , Kequan Chen , Peicheng Luo
{"title":"Enhancing thermostability of lysine hydroxylase via a semi-rational design","authors":"Chengjuan Hu ,&nbsp;Zhijie Zheng ,&nbsp;Yue Zhang ,&nbsp;Feifei Chen ,&nbsp;Alei Zhang ,&nbsp;Kequan Chen ,&nbsp;Peicheng Luo","doi":"10.1016/j.procbio.2024.12.005","DOIUrl":null,"url":null,"abstract":"<div><div>(2<em>S</em>,4 <em>R</em>)-4-Hydroxylysine (4-OH-Lys), a derivative of L-lysine, possesses a unique chemical structure that makes it a crucial precursor for the synthesis of pharmaceutical molecules, with extensive applications in the pharmaceutical and biochemical industries. Lysine hydroxylase (K4H) catalyzes the conversion of L-lysine to 4-OH-Lys, offering advantages such as mild reaction conditions, straightforward reaction steps, good regioselectivity, and high catalytic efficiency compared to chemical synthesis and natural extraction methods. However, the low thermostability of K4H hinders its application in large-scale production. In this study, we employed a semi-rational design approach, guided by ΔΔG folding free energy calculations and message-passing neural networks to enhance the thermostability of K4H. After two rounds of evolution, we identified two beneficial mutants: M25 (S101P/Q257M) and M32 (Q257M/V298I). Thermostability assessments revealed that the half-lives (t<sub>1/2</sub>) of M25 and M32 at 40 °C were 23.9-fold and 13.3-fold higher than that of the wild-type (WT), with melting temperatures (T<sub>m</sub>) exceeding those of WT by 4.2 °C and 8.3 °C, respectively. Molecular dynamics simulations illuminated the mechanisms underlying this enhanced thermostability. This work provides valuable insights into the thermostability of K4H and yields key mutants that are promising candidates for practical production of 4-OH-Lys.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"149 ","pages":"Pages 111-120"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359511324004082","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

(2S,4 R)-4-Hydroxylysine (4-OH-Lys), a derivative of L-lysine, possesses a unique chemical structure that makes it a crucial precursor for the synthesis of pharmaceutical molecules, with extensive applications in the pharmaceutical and biochemical industries. Lysine hydroxylase (K4H) catalyzes the conversion of L-lysine to 4-OH-Lys, offering advantages such as mild reaction conditions, straightforward reaction steps, good regioselectivity, and high catalytic efficiency compared to chemical synthesis and natural extraction methods. However, the low thermostability of K4H hinders its application in large-scale production. In this study, we employed a semi-rational design approach, guided by ΔΔG folding free energy calculations and message-passing neural networks to enhance the thermostability of K4H. After two rounds of evolution, we identified two beneficial mutants: M25 (S101P/Q257M) and M32 (Q257M/V298I). Thermostability assessments revealed that the half-lives (t1/2) of M25 and M32 at 40 °C were 23.9-fold and 13.3-fold higher than that of the wild-type (WT), with melting temperatures (Tm) exceeding those of WT by 4.2 °C and 8.3 °C, respectively. Molecular dynamics simulations illuminated the mechanisms underlying this enhanced thermostability. This work provides valuable insights into the thermostability of K4H and yields key mutants that are promising candidates for practical production of 4-OH-Lys.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Process Biochemistry
Process Biochemistry 生物-工程:化工
CiteScore
8.30
自引率
4.50%
发文量
374
审稿时长
53 days
期刊介绍: Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信