Review and selection methodology for water treatment systems in mobile encampments for military applications

Jacob Rubel , Frank Buysschaert , Veerle Vandeginste
{"title":"Review and selection methodology for water treatment systems in mobile encampments for military applications","authors":"Jacob Rubel ,&nbsp;Frank Buysschaert ,&nbsp;Veerle Vandeginste","doi":"10.1016/j.clwat.2025.100065","DOIUrl":null,"url":null,"abstract":"<div><div>Securing a steady supply of water and energy is vital for the success of mobile operations in emergency and military situations. A mobile energy and water supply systems (EWSS) seeks to guarantee these resources through the use of renewable energy, hydrogen energy storage, and built-in water purification systems. The design of these water treatment systems involves a series of interesting challenges regarding the selection of treatment technologies and their interactions with the energy system. This work seeks to review the available water treatment technologies and evaluate their application in mobile water treatment systems as well as suitability for the production of ultrapure water to generate hydrogen via electrolysis. Each technology is evaluated using a technique for order preference by similarity to ideal solution (TOPSIS) multi-criteria decision making (MCDM) to provide a guide for the selection of water treatment technologies for mobile water treatment systems in an EWSS. Based on their TOPSIS scores, GAC filtration, membrane distillation, UV treatment, ultrafiltration, and microfiltration stood out as key technologies for a mobile water treatment system.</div></div>","PeriodicalId":100257,"journal":{"name":"Cleaner Water","volume":"3 ","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cleaner Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950263225000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Securing a steady supply of water and energy is vital for the success of mobile operations in emergency and military situations. A mobile energy and water supply systems (EWSS) seeks to guarantee these resources through the use of renewable energy, hydrogen energy storage, and built-in water purification systems. The design of these water treatment systems involves a series of interesting challenges regarding the selection of treatment technologies and their interactions with the energy system. This work seeks to review the available water treatment technologies and evaluate their application in mobile water treatment systems as well as suitability for the production of ultrapure water to generate hydrogen via electrolysis. Each technology is evaluated using a technique for order preference by similarity to ideal solution (TOPSIS) multi-criteria decision making (MCDM) to provide a guide for the selection of water treatment technologies for mobile water treatment systems in an EWSS. Based on their TOPSIS scores, GAC filtration, membrane distillation, UV treatment, ultrafiltration, and microfiltration stood out as key technologies for a mobile water treatment system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信