Source of rainfall above Mediterranean caves (Chauvet and Orgnac) and long-term trend of cave dripping oxygen isotopes based on 20 years monitoring records: Importance for speleothem-based climate reconstructions
Jian Zhang , Dominique Genty , François Bourges , Simon L.L. Michel , Bénédicte Minster , Edouard Régnier , Ludovic Devaux , Stéphane Bujan , Zhen Su , Terhi K. Laurila
{"title":"Source of rainfall above Mediterranean caves (Chauvet and Orgnac) and long-term trend of cave dripping oxygen isotopes based on 20 years monitoring records: Importance for speleothem-based climate reconstructions","authors":"Jian Zhang , Dominique Genty , François Bourges , Simon L.L. Michel , Bénédicte Minster , Edouard Régnier , Ludovic Devaux , Stéphane Bujan , Zhen Su , Terhi K. Laurila","doi":"10.1016/j.quascirev.2024.109145","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the factors that shape climate and influence the isotopic composition of precipitation is crucial for paleoclimate reconstructions, especially in regions with Mediterranean climates where rainfall is influenced by both Atlantic and Mediterranean moisture sources. This study examines the relationship between moisture origins, climatic variables, and the stable isotopic composition of precipitation and cave drip water in the Orgnac and Chauvet caves, located in southern France, over a 20-year period. The research reveals notable seasonal variations in rainfall δ<sup>18</sup>O values, driven by temperature and Rayleigh distillation processes. As shown in our previous work in Villars Cave (SW-France), temperature changes alone cannot fully explain the observed isotopic variability. We observed that winter precipitation tends to have lower δ<sup>18</sup>O values due to longer transport distances from distant oceanic sources, while summer precipitation displays higher δ<sup>18</sup>O values due to shorter transport paths. Additionally, the study highlights the influence of sea surface wind speeds and evaporation rates on water vapor isotopes, further shaping the seasonal δ<sup>18</sup>O patterns. As rainwater infiltrates the soil and percolates into the karst system, the seasonal δ<sup>18</sup>O signal in drip water is often dampened due to mixing in the reservoirs above the caves, which typically reduces seasonality. The key findings include: (1) a multi-year increasing trend in drip water δ<sup>18</sup>O, likely associated with reduced local water excess and the effects of global warming, with significant implications for speleothem isotope records, and (2) moisture from the Mediterranean Sea contributes to 10% of the total precipitation source, despite the region's proximity to the sea, especially during intense storm events. This study provides new insights into the complex interactions between moisture sources, temperature, and isotopic signatures in Mediterranean climate regions, with implications for improving speleothem-based paleoclimate reconstructions.</div></div>","PeriodicalId":20926,"journal":{"name":"Quaternary Science Reviews","volume":"349 ","pages":"Article 109145"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0277379124006474","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the factors that shape climate and influence the isotopic composition of precipitation is crucial for paleoclimate reconstructions, especially in regions with Mediterranean climates where rainfall is influenced by both Atlantic and Mediterranean moisture sources. This study examines the relationship between moisture origins, climatic variables, and the stable isotopic composition of precipitation and cave drip water in the Orgnac and Chauvet caves, located in southern France, over a 20-year period. The research reveals notable seasonal variations in rainfall δ18O values, driven by temperature and Rayleigh distillation processes. As shown in our previous work in Villars Cave (SW-France), temperature changes alone cannot fully explain the observed isotopic variability. We observed that winter precipitation tends to have lower δ18O values due to longer transport distances from distant oceanic sources, while summer precipitation displays higher δ18O values due to shorter transport paths. Additionally, the study highlights the influence of sea surface wind speeds and evaporation rates on water vapor isotopes, further shaping the seasonal δ18O patterns. As rainwater infiltrates the soil and percolates into the karst system, the seasonal δ18O signal in drip water is often dampened due to mixing in the reservoirs above the caves, which typically reduces seasonality. The key findings include: (1) a multi-year increasing trend in drip water δ18O, likely associated with reduced local water excess and the effects of global warming, with significant implications for speleothem isotope records, and (2) moisture from the Mediterranean Sea contributes to 10% of the total precipitation source, despite the region's proximity to the sea, especially during intense storm events. This study provides new insights into the complex interactions between moisture sources, temperature, and isotopic signatures in Mediterranean climate regions, with implications for improving speleothem-based paleoclimate reconstructions.
期刊介绍:
Quaternary Science Reviews caters for all aspects of Quaternary science, and includes, for example, geology, geomorphology, geography, archaeology, soil science, palaeobotany, palaeontology, palaeoclimatology and the full range of applicable dating methods. The dividing line between what constitutes the review paper and one which contains new original data is not easy to establish, so QSR also publishes papers with new data especially if these perform a review function. All the Quaternary sciences are changing rapidly and subject to re-evaluation as the pace of discovery quickens; thus the diverse but comprehensive role of Quaternary Science Reviews keeps readers abreast of the wider issues relating to new developments in the field.