Exact and efficient search-based wall distance algorithm for partitioned unstructured grids

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jun Seok Oh , Tae Yoon Kung , Kyu Hong Kim
{"title":"Exact and efficient search-based wall distance algorithm for partitioned unstructured grids","authors":"Jun Seok Oh ,&nbsp;Tae Yoon Kung ,&nbsp;Kyu Hong Kim","doi":"10.1016/j.compfluid.2024.106494","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a novel search-based wall distance calculation algorithm. The algorithm is highly efficient and satisfies the crucial requirement of exactness in wall distance calculations, taking into account the full geometry of the discretized surface. Unlike conventional search-based algorithms that use element-wise bounding boxes or auxiliary grids, the developed algorithm employs only a set of zero-dimensional reference points representing the elements of the discretized surface. Reference points can be chosen as the centers of faces, the centers of edges, or the vertices. The conservative relation between the approximate distance using one of these references and the exact distance is established, allowing for the efficient extraction of element candidates using only low-level information. The algorithm does not require complex pre-processing of the surface or any information about the query points, ensuring high software modularity. An intuitive load balancing procedure is also proposed to address the load imbalance arising from partitioning-based parallelization. Numerical test demonstrates that the developed algorithm shows three orders of magnitude speed-up compared to exhaustive search and one to two orders of magnitude speed-up compared to other search-based algorithms. It also shows high parallel scalability on partitioned meshes, indicating its feasibility for large-scale problems.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"288 ","pages":"Article 106494"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003256","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a novel search-based wall distance calculation algorithm. The algorithm is highly efficient and satisfies the crucial requirement of exactness in wall distance calculations, taking into account the full geometry of the discretized surface. Unlike conventional search-based algorithms that use element-wise bounding boxes or auxiliary grids, the developed algorithm employs only a set of zero-dimensional reference points representing the elements of the discretized surface. Reference points can be chosen as the centers of faces, the centers of edges, or the vertices. The conservative relation between the approximate distance using one of these references and the exact distance is established, allowing for the efficient extraction of element candidates using only low-level information. The algorithm does not require complex pre-processing of the surface or any information about the query points, ensuring high software modularity. An intuitive load balancing procedure is also proposed to address the load imbalance arising from partitioning-based parallelization. Numerical test demonstrates that the developed algorithm shows three orders of magnitude speed-up compared to exhaustive search and one to two orders of magnitude speed-up compared to other search-based algorithms. It also shows high parallel scalability on partitioned meshes, indicating its feasibility for large-scale problems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信