Optimized dynamic similarity models to predict SGS backscatter in 2D decaying turbulence

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Dandan Wang , Yu-xin Ren , Mengnan Ding
{"title":"Optimized dynamic similarity models to predict SGS backscatter in 2D decaying turbulence","authors":"Dandan Wang ,&nbsp;Yu-xin Ren ,&nbsp;Mengnan Ding","doi":"10.1016/j.compfluid.2024.106497","DOIUrl":null,"url":null,"abstract":"<div><div>Large eddy simulation (LES) of two-dimensional (2D) turbulence is often used in the geostrophic flows. However, some basic dynamics underlying traditional SGS models are absent in 2D turbulence, e.g. the vortex stretching. Hence, this research proposes an optimized dynamic similarity model (DSM) for the SGS stress, which is constructed through the dynamic procedure based on the Germano identity. In addition, a modification is made to the dynamic mixed model (DMM) for the sake of realizability condition. The optimized DSM is justified in comparison with the DMM, through the a priori and a posteriori verifications, in the context of the 2D decaying turbulence with turbulent Reynolds number of <span><math><mrow><mi>R</mi><mi>e</mi><mo>=</mo><mn>3</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>4</mn></mrow></msup></mrow></math></span> and turbulent Mach number of <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></math></span>. Special attention is paid to the consistency of the verification procedure, so that the filtering operations used in the direct numerical simulation (DNS) and LES are optimally equivalent. The SGS transport phenomena, especially the SGS backscatter, predicted by these two models are studied in detail. In addition, the optimized DSM and the DMM are extended for the modified SGS transport vectors of passive scalars to show their capability in calculating 2D turbulent mixing. The numerical results show the optimized DSM provides larger correlation coefficient, better locality, and stronger SGS backscsatter than the DMM does, and therefore it is more suitable for the LES of 2D turbulence.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"288 ","pages":"Article 106497"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793024003281","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Large eddy simulation (LES) of two-dimensional (2D) turbulence is often used in the geostrophic flows. However, some basic dynamics underlying traditional SGS models are absent in 2D turbulence, e.g. the vortex stretching. Hence, this research proposes an optimized dynamic similarity model (DSM) for the SGS stress, which is constructed through the dynamic procedure based on the Germano identity. In addition, a modification is made to the dynamic mixed model (DMM) for the sake of realizability condition. The optimized DSM is justified in comparison with the DMM, through the a priori and a posteriori verifications, in the context of the 2D decaying turbulence with turbulent Reynolds number of Re=3.7×104 and turbulent Mach number of Mt=0.1. Special attention is paid to the consistency of the verification procedure, so that the filtering operations used in the direct numerical simulation (DNS) and LES are optimally equivalent. The SGS transport phenomena, especially the SGS backscatter, predicted by these two models are studied in detail. In addition, the optimized DSM and the DMM are extended for the modified SGS transport vectors of passive scalars to show their capability in calculating 2D turbulent mixing. The numerical results show the optimized DSM provides larger correlation coefficient, better locality, and stronger SGS backscsatter than the DMM does, and therefore it is more suitable for the LES of 2D turbulence.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信